(* Title: HOL/WF_Rel
ID: $Id$
Author: Konrad Slind
Copyright 1996 TU Munich
Derived WF relations: inverse image, lexicographic product, measure, ...
*)
open WF_Rel;
(*----------------------------------------------------------------------------
* "Less than" on the natural numbers
*---------------------------------------------------------------------------*)
Goalw [less_than_def] "wf less_than";
by (rtac (wf_pred_nat RS wf_trancl) 1);
qed "wf_less_than";
AddIffs [wf_less_than];
Goalw [less_than_def] "trans less_than";
by (rtac trans_trancl 1);
qed "trans_less_than";
AddIffs [trans_less_than];
Goalw [less_than_def, less_def] "((x,y): less_than) = (x<y)";
by (Simp_tac 1);
qed "less_than_iff";
AddIffs [less_than_iff];
(*----------------------------------------------------------------------------
* The inverse image into a wellfounded relation is wellfounded.
*---------------------------------------------------------------------------*)
Goal "wf(r) ==> wf(inv_image r (f::'a=>'b))";
by (full_simp_tac (simpset() addsimps [inv_image_def, wf_eq_minimal]) 1);
by (Clarify_tac 1);
by (subgoal_tac "? (w::'b). w : {w. ? (x::'a). x: Q & (f x = w)}" 1);
by (blast_tac (claset() delrules [allE]) 2);
by (etac allE 1);
by (mp_tac 1);
by (Blast_tac 1);
qed "wf_inv_image";
AddSIs [wf_inv_image];
Goalw [trans_def,inv_image_def]
"!!r. trans r ==> trans (inv_image r f)";
by (Simp_tac 1);
by (Blast_tac 1);
qed "trans_inv_image";
(*----------------------------------------------------------------------------
* All measures are wellfounded.
*---------------------------------------------------------------------------*)
Goalw [measure_def] "wf (measure f)";
by (rtac (wf_less_than RS wf_inv_image) 1);
qed "wf_measure";
AddIffs [wf_measure];
val measure_induct = standard
(asm_full_simplify (simpset() addsimps [measure_def,inv_image_def])
(wf_measure RS wf_induct));
store_thm("measure_induct",measure_induct);
(*----------------------------------------------------------------------------
* Wellfoundedness of lexicographic combinations
*---------------------------------------------------------------------------*)
val [wfa,wfb] = goalw thy [wf_def,lex_prod_def]
"[| wf(ra); wf(rb) |] ==> wf(ra**rb)";
by (EVERY1 [rtac allI,rtac impI]);
by (simp_tac (HOL_basic_ss addsimps [split_paired_All]) 1);
by (rtac (wfa RS spec RS mp) 1);
by (EVERY1 [rtac allI,rtac impI]);
by (rtac (wfb RS spec RS mp) 1);
by (Blast_tac 1);
qed "wf_lex_prod";
AddSIs [wf_lex_prod];
(*---------------------------------------------------------------------------
* Transitivity of WF combinators.
*---------------------------------------------------------------------------*)
Goalw [trans_def, lex_prod_def]
"!!R1 R2. [| trans R1; trans R2 |] ==> trans (R1 ** R2)";
by (Simp_tac 1);
by (Blast_tac 1);
qed "trans_lex_prod";
AddSIs [trans_lex_prod];
(*---------------------------------------------------------------------------
* Wellfoundedness of proper subset on finite sets.
*---------------------------------------------------------------------------*)
Goalw [finite_psubset_def] "wf(finite_psubset)";
by (rtac (wf_measure RS wf_subset) 1);
by (simp_tac (simpset() addsimps [measure_def, inv_image_def, less_than_def,
symmetric less_def])1);
by (fast_tac (claset() addSIs [psubset_card]) 1);
qed "wf_finite_psubset";
Goalw [finite_psubset_def, trans_def] "trans finite_psubset";
by (simp_tac (simpset() addsimps [psubset_def]) 1);
by (Blast_tac 1);
qed "trans_finite_psubset";
(*---------------------------------------------------------------------------
* Wellfoundedness of finite acyclic relations
* Cannot go into WF because it needs Finite.
*---------------------------------------------------------------------------*)
Goal "finite r ==> acyclic r --> wf r";
by (etac finite_induct 1);
by (Blast_tac 1);
by (split_all_tac 1);
by (Asm_full_simp_tac 1);
qed_spec_mp "finite_acyclic_wf";
qed_goal "finite_acyclic_wf_converse" thy
"!!X. [|finite r; acyclic r|] ==> wf (r^-1)" (K [
etac (finite_converse RS iffD2 RS finite_acyclic_wf) 1,
etac (acyclic_converse RS iffD2) 1]);
Goal "finite r ==> wf r = acyclic r";
by (blast_tac (claset() addIs [finite_acyclic_wf,wf_acyclic]) 1);
qed "wf_iff_acyclic_if_finite";
(*---------------------------------------------------------------------------
* A relation is wellfounded iff it has no infinite descending chain
* Cannot go into WF because it needs type nat.
*---------------------------------------------------------------------------*)
Goalw [wf_eq_minimal RS eq_reflection]
"wf r = (~(? f. !i. (f(Suc i),f i) : r))";
by (rtac iffI 1);
by (rtac notI 1);
by (etac exE 1);
by (eres_inst_tac [("x","{w. ? i. w=f i}")] allE 1);
by (Blast_tac 1);
by (etac swap 1);
by (Asm_full_simp_tac 1);
by (Clarify_tac 1);
by (subgoal_tac "!n. nat_rec x (%i y. @z. z:Q & (z,y):r) n : Q" 1);
by (res_inst_tac[("x","nat_rec x (%i y. @z. z:Q & (z,y):r)")]exI 1);
by (rtac allI 1);
by (Simp_tac 1);
by (rtac selectI2EX 1);
by (Blast_tac 1);
by (Blast_tac 1);
by (rtac allI 1);
by (induct_tac "n" 1);
by (Asm_simp_tac 1);
by (Simp_tac 1);
by (rtac selectI2EX 1);
by (Blast_tac 1);
by (Blast_tac 1);
qed "wf_iff_no_infinite_down_chain";