src/HOL/IMP/Types.thy
author nipkow
Thu, 11 Apr 2013 15:10:22 +0200
changeset 51694 6ae88642962f
parent 51461 e1e8191c6725
child 52046 bc01725d7918
permissions -rw-r--r--
tuned

header "A Typed Language"

theory Types imports Star Complex_Main begin

subsection "Arithmetic Expressions"

datatype val = Iv int | Rv real

type_synonym vname = string
type_synonym state = "vname \<Rightarrow> val"

text_raw{*\snip{aexptDef}{0}{2}{% *}
datatype aexp =  Ic int | Rc real | V vname | Plus aexp aexp
text_raw{*}%endsnip*}

inductive taval :: "aexp \<Rightarrow> state \<Rightarrow> val \<Rightarrow> bool" where
"taval (Ic i) s (Iv i)" |
"taval (Rc r) s (Rv r)" |
"taval (V x) s (s x)" |
"taval a1 s (Iv i1) \<Longrightarrow> taval a2 s (Iv i2)
 \<Longrightarrow> taval (Plus a1 a2) s (Iv(i1+i2))" |
"taval a1 s (Rv r1) \<Longrightarrow> taval a2 s (Rv r2)
 \<Longrightarrow> taval (Plus a1 a2) s (Rv(r1+r2))"

inductive_cases [elim!]:
  "taval (Ic i) s v"  "taval (Rc i) s v"
  "taval (V x) s v"
  "taval (Plus a1 a2) s v"

subsection "Boolean Expressions"

datatype bexp = Bc bool | Not bexp | And bexp bexp | Less aexp aexp

inductive tbval :: "bexp \<Rightarrow> state \<Rightarrow> bool \<Rightarrow> bool" where
"tbval (Bc v) s v" |
"tbval b s bv \<Longrightarrow> tbval (Not b) s (\<not> bv)" |
"tbval b1 s bv1 \<Longrightarrow> tbval b2 s bv2 \<Longrightarrow> tbval (And b1 b2) s (bv1 & bv2)" |
"taval a1 s (Iv i1) \<Longrightarrow> taval a2 s (Iv i2) \<Longrightarrow> tbval (Less a1 a2) s (i1 < i2)" |
"taval a1 s (Rv r1) \<Longrightarrow> taval a2 s (Rv r2) \<Longrightarrow> tbval (Less a1 a2) s (r1 < r2)"

subsection "Syntax of Commands"
(* a copy of Com.thy - keep in sync! *)

datatype
  com = SKIP 
      | Assign vname aexp       ("_ ::= _" [1000, 61] 61)
      | Seq    com  com         ("_; _"  [60, 61] 60)
      | If     bexp com com     ("IF _ THEN _ ELSE _"  [0, 0, 61] 61)
      | While  bexp com         ("WHILE _ DO _"  [0, 61] 61)


subsection "Small-Step Semantics of Commands"

inductive
  small_step :: "(com \<times> state) \<Rightarrow> (com \<times> state) \<Rightarrow> bool" (infix "\<rightarrow>" 55)
where
Assign:  "taval a s v \<Longrightarrow> (x ::= a, s) \<rightarrow> (SKIP, s(x := v))" |

Seq1:   "(SKIP;c,s) \<rightarrow> (c,s)" |
Seq2:   "(c1,s) \<rightarrow> (c1',s') \<Longrightarrow> (c1;c2,s) \<rightarrow> (c1';c2,s')" |

IfTrue:  "tbval b s True \<Longrightarrow> (IF b THEN c1 ELSE c2,s) \<rightarrow> (c1,s)" |
IfFalse: "tbval b s False \<Longrightarrow> (IF b THEN c1 ELSE c2,s) \<rightarrow> (c2,s)" |

While:   "(WHILE b DO c,s) \<rightarrow> (IF b THEN c; WHILE b DO c ELSE SKIP,s)"

lemmas small_step_induct = small_step.induct[split_format(complete)]

subsection "The Type System"

datatype ty = Ity | Rty

type_synonym tyenv = "vname \<Rightarrow> ty"

inductive atyping :: "tyenv \<Rightarrow> aexp \<Rightarrow> ty \<Rightarrow> bool"
  ("(1_/ \<turnstile>/ (_ :/ _))" [50,0,50] 50)
where
Ic_ty: "\<Gamma> \<turnstile> Ic i : Ity" |
Rc_ty: "\<Gamma> \<turnstile> Rc r : Rty" |
V_ty: "\<Gamma> \<turnstile> V x : \<Gamma> x" |
Plus_ty: "\<Gamma> \<turnstile> a1 : \<tau> \<Longrightarrow> \<Gamma> \<turnstile> a2 : \<tau> \<Longrightarrow> \<Gamma> \<turnstile> Plus a1 a2 : \<tau>"

text{* Warning: the ``:'' notation leads to syntactic ambiguities,
i.e. multiple parse trees, because ``:'' also stands for set membership.
In most situations Isabelle's type system will reject all but one parse tree,
but will still inform you of the potential ambiguity. *}

inductive btyping :: "tyenv \<Rightarrow> bexp \<Rightarrow> bool" (infix "\<turnstile>" 50)
where
B_ty: "\<Gamma> \<turnstile> Bc v" |
Not_ty: "\<Gamma> \<turnstile> b \<Longrightarrow> \<Gamma> \<turnstile> Not b" |
And_ty: "\<Gamma> \<turnstile> b1 \<Longrightarrow> \<Gamma> \<turnstile> b2 \<Longrightarrow> \<Gamma> \<turnstile> And b1 b2" |
Less_ty: "\<Gamma> \<turnstile> a1 : \<tau> \<Longrightarrow> \<Gamma> \<turnstile> a2 : \<tau> \<Longrightarrow> \<Gamma> \<turnstile> Less a1 a2"

inductive ctyping :: "tyenv \<Rightarrow> com \<Rightarrow> bool" (infix "\<turnstile>" 50) where
Skip_ty: "\<Gamma> \<turnstile> SKIP" |
Assign_ty: "\<Gamma> \<turnstile> a : \<Gamma>(x) \<Longrightarrow> \<Gamma> \<turnstile> x ::= a" |
Seq_ty: "\<Gamma> \<turnstile> c1 \<Longrightarrow> \<Gamma> \<turnstile> c2 \<Longrightarrow> \<Gamma> \<turnstile> c1;c2" |
If_ty: "\<Gamma> \<turnstile> b \<Longrightarrow> \<Gamma> \<turnstile> c1 \<Longrightarrow> \<Gamma> \<turnstile> c2 \<Longrightarrow> \<Gamma> \<turnstile> IF b THEN c1 ELSE c2" |
While_ty: "\<Gamma> \<turnstile> b \<Longrightarrow> \<Gamma> \<turnstile> c \<Longrightarrow> \<Gamma> \<turnstile> WHILE b DO c"

inductive_cases [elim!]:
  "\<Gamma> \<turnstile> x ::= a"  "\<Gamma> \<turnstile> c1;c2"
  "\<Gamma> \<turnstile> IF b THEN c1 ELSE c2"
  "\<Gamma> \<turnstile> WHILE b DO c"

subsection "Well-typed Programs Do Not Get Stuck"

fun type :: "val \<Rightarrow> ty" where
"type (Iv i) = Ity" |
"type (Rv r) = Rty"

lemma [simp]: "type v = Ity \<longleftrightarrow> (\<exists>i. v = Iv i)"
by (cases v) simp_all

lemma [simp]: "type v = Rty \<longleftrightarrow> (\<exists>r. v = Rv r)"
by (cases v) simp_all

definition styping :: "tyenv \<Rightarrow> state \<Rightarrow> bool" (infix "\<turnstile>" 50)
where "\<Gamma> \<turnstile> s  \<longleftrightarrow>  (\<forall>x. type (s x) = \<Gamma> x)"

lemma apreservation:
  "\<Gamma> \<turnstile> a : \<tau> \<Longrightarrow> taval a s v \<Longrightarrow> \<Gamma> \<turnstile> s \<Longrightarrow> type v = \<tau>"
apply(induction arbitrary: v rule: atyping.induct)
apply (fastforce simp: styping_def)+
done

lemma aprogress: "\<Gamma> \<turnstile> a : \<tau> \<Longrightarrow> \<Gamma> \<turnstile> s \<Longrightarrow> \<exists>v. taval a s v"
proof(induction rule: atyping.induct)
  case (Plus_ty \<Gamma> a1 t a2)
  then obtain v1 v2 where v: "taval a1 s v1" "taval a2 s v2" by blast
  show ?case
  proof (cases v1)
    case Iv
    with Plus_ty v show ?thesis
      by(fastforce intro: taval.intros(4) dest!: apreservation)
  next
    case Rv
    with Plus_ty v show ?thesis
      by(fastforce intro: taval.intros(5) dest!: apreservation)
  qed
qed (auto intro: taval.intros)

lemma bprogress: "\<Gamma> \<turnstile> b \<Longrightarrow> \<Gamma> \<turnstile> s \<Longrightarrow> \<exists>v. tbval b s v"
proof(induction rule: btyping.induct)
  case (Less_ty \<Gamma> a1 t a2)
  then obtain v1 v2 where v: "taval a1 s v1" "taval a2 s v2"
    by (metis aprogress)
  show ?case
  proof (cases v1)
    case Iv
    with Less_ty v show ?thesis
      by (fastforce intro!: tbval.intros(4) dest!:apreservation)
  next
    case Rv
    with Less_ty v show ?thesis
      by (fastforce intro!: tbval.intros(5) dest!:apreservation)
  qed
qed (auto intro: tbval.intros)

theorem progress:
  "\<Gamma> \<turnstile> c \<Longrightarrow> \<Gamma> \<turnstile> s \<Longrightarrow> c \<noteq> SKIP \<Longrightarrow> \<exists>cs'. (c,s) \<rightarrow> cs'"
proof(induction rule: ctyping.induct)
  case Skip_ty thus ?case by simp
next
  case Assign_ty 
  thus ?case by (metis Assign aprogress)
next
  case Seq_ty thus ?case by simp (metis Seq1 Seq2)
next
  case (If_ty \<Gamma> b c1 c2)
  then obtain bv where "tbval b s bv" by (metis bprogress)
  show ?case
  proof(cases bv)
    assume "bv"
    with `tbval b s bv` show ?case by simp (metis IfTrue)
  next
    assume "\<not>bv"
    with `tbval b s bv` show ?case by simp (metis IfFalse)
  qed
next
  case While_ty show ?case by (metis While)
qed

theorem styping_preservation:
  "(c,s) \<rightarrow> (c',s') \<Longrightarrow> \<Gamma> \<turnstile> c \<Longrightarrow> \<Gamma> \<turnstile> s \<Longrightarrow> \<Gamma> \<turnstile> s'"
proof(induction rule: small_step_induct)
  case Assign thus ?case
    by (auto simp: styping_def) (metis Assign(1,3) apreservation)
qed auto

theorem ctyping_preservation:
  "(c,s) \<rightarrow> (c',s') \<Longrightarrow> \<Gamma> \<turnstile> c \<Longrightarrow> \<Gamma> \<turnstile> c'"
by (induct rule: small_step_induct) (auto simp: ctyping.intros)

abbreviation small_steps :: "com * state \<Rightarrow> com * state \<Rightarrow> bool" (infix "\<rightarrow>*" 55)
where "x \<rightarrow>* y == star small_step x y"

theorem type_sound:
  "(c,s) \<rightarrow>* (c',s') \<Longrightarrow> \<Gamma> \<turnstile> c \<Longrightarrow> \<Gamma> \<turnstile> s \<Longrightarrow> c' \<noteq> SKIP
   \<Longrightarrow> \<exists>cs''. (c',s') \<rightarrow> cs''"
apply(induction rule:star_induct)
apply (metis progress)
by (metis styping_preservation ctyping_preservation)

end