(* Title: ZF/UNITY/Union.thy
ID: $Id$
Author: Sidi O Ehmety, Computer Laboratory
Copyright 2001 University of Cambridge
Unions of programs
Partly from Misra's Chapter 5: Asynchronous Compositions of Programs
Theory ported form HOL..
*)
theory Union imports SubstAx FP
begin
definition
(*FIXME: conjoin Init(F) Int Init(G) \<noteq> 0 *)
ok :: "[i, i] => o" (infixl "ok" 65) where
"F ok G == Acts(F) \<subseteq> AllowedActs(G) &
Acts(G) \<subseteq> AllowedActs(F)"
definition
(*FIXME: conjoin (\<Inter>i \<in> I. Init(F(i))) \<noteq> 0 *)
OK :: "[i, i=>i] => o" where
"OK(I,F) == (\<forall>i \<in> I. \<forall>j \<in> I-{i}. Acts(F(i)) \<subseteq> AllowedActs(F(j)))"
definition
JOIN :: "[i, i=>i] => i" where
"JOIN(I,F) == if I = 0 then SKIP else
mk_program(\<Inter>i \<in> I. Init(F(i)), \<Union>i \<in> I. Acts(F(i)),
\<Inter>i \<in> I. AllowedActs(F(i)))"
definition
Join :: "[i, i] => i" (infixl "Join" 65) where
"F Join G == mk_program (Init(F) Int Init(G), Acts(F) Un Acts(G),
AllowedActs(F) Int AllowedActs(G))"
definition
(*Characterizes safety properties. Used with specifying AllowedActs*)
safety_prop :: "i => o" where
"safety_prop(X) == X\<subseteq>program &
SKIP \<in> X & (\<forall>G \<in> program. Acts(G) \<subseteq> (\<Union>F \<in> X. Acts(F)) --> G \<in> X)"
syntax
"@JOIN1" :: "[pttrns, i] => i" ("(3JN _./ _)" 10)
"@JOIN" :: "[pttrn, i, i] => i" ("(3JN _:_./ _)" 10)
translations
"JN x:A. B" == "CONST JOIN(A, (%x. B))"
"JN x y. B" == "JN x. JN y. B"
"JN x. B" == "CONST JOIN(CONST state,(%x. B))"
notation (xsymbols)
SKIP ("\<bottom>") and
Join (infixl "\<squnion>" 65)
syntax (xsymbols)
"@JOIN1" :: "[pttrns, i] => i" ("(3\<Squnion> _./ _)" 10)
"@JOIN" :: "[pttrn, i, i] => i" ("(3\<Squnion> _ \<in> _./ _)" 10)
subsection{*SKIP*}
lemma reachable_SKIP [simp]: "reachable(SKIP) = state"
by (force elim: reachable.induct intro: reachable.intros)
text{*Elimination programify from ok and Join*}
lemma ok_programify_left [iff]: "programify(F) ok G <-> F ok G"
by (simp add: ok_def)
lemma ok_programify_right [iff]: "F ok programify(G) <-> F ok G"
by (simp add: ok_def)
lemma Join_programify_left [simp]: "programify(F) Join G = F Join G"
by (simp add: Join_def)
lemma Join_programify_right [simp]: "F Join programify(G) = F Join G"
by (simp add: Join_def)
subsection{*SKIP and safety properties*}
lemma SKIP_in_constrains_iff [iff]: "(SKIP \<in> A co B) <-> (A\<subseteq>B & st_set(A))"
by (unfold constrains_def st_set_def, auto)
lemma SKIP_in_Constrains_iff [iff]: "(SKIP \<in> A Co B)<-> (state Int A\<subseteq>B)"
by (unfold Constrains_def, auto)
lemma SKIP_in_stable [iff]: "SKIP \<in> stable(A) <-> st_set(A)"
by (auto simp add: stable_def)
lemma SKIP_in_Stable [iff]: "SKIP \<in> Stable(A)"
by (unfold Stable_def, auto)
subsection{*Join and JOIN types*}
lemma Join_in_program [iff,TC]: "F Join G \<in> program"
by (unfold Join_def, auto)
lemma JOIN_in_program [iff,TC]: "JOIN(I,F) \<in> program"
by (unfold JOIN_def, auto)
subsection{*Init, Acts, and AllowedActs of Join and JOIN*}
lemma Init_Join [simp]: "Init(F Join G) = Init(F) Int Init(G)"
by (simp add: Int_assoc Join_def)
lemma Acts_Join [simp]: "Acts(F Join G) = Acts(F) Un Acts(G)"
by (simp add: Int_Un_distrib2 cons_absorb Join_def)
lemma AllowedActs_Join [simp]: "AllowedActs(F Join G) =
AllowedActs(F) Int AllowedActs(G)"
apply (simp add: Int_assoc cons_absorb Join_def)
done
subsection{*Join's algebraic laws*}
lemma Join_commute: "F Join G = G Join F"
by (simp add: Join_def Un_commute Int_commute)
lemma Join_left_commute: "A Join (B Join C) = B Join (A Join C)"
apply (simp add: Join_def Int_Un_distrib2 cons_absorb)
apply (simp add: Un_ac Int_ac Int_Un_distrib2 cons_absorb)
done
lemma Join_assoc: "(F Join G) Join H = F Join (G Join H)"
by (simp add: Un_ac Join_def cons_absorb Int_assoc Int_Un_distrib2)
subsection{*Needed below*}
lemma cons_id [simp]: "cons(id(state), Pow(state * state)) = Pow(state*state)"
by auto
lemma Join_SKIP_left [simp]: "SKIP Join F = programify(F)"
apply (unfold Join_def SKIP_def)
apply (auto simp add: Int_absorb cons_eq)
done
lemma Join_SKIP_right [simp]: "F Join SKIP = programify(F)"
apply (subst Join_commute)
apply (simp add: Join_SKIP_left)
done
lemma Join_absorb [simp]: "F Join F = programify(F)"
by (rule program_equalityI, auto)
lemma Join_left_absorb: "F Join (F Join G) = F Join G"
by (simp add: Join_assoc [symmetric])
subsection{*Join is an AC-operator*}
lemmas Join_ac = Join_assoc Join_left_absorb Join_commute Join_left_commute
subsection{*Eliminating programify form JN and OK expressions*}
lemma OK_programify [iff]: "OK(I, %x. programify(F(x))) <-> OK(I, F)"
by (simp add: OK_def)
lemma JN_programify [iff]: "JOIN(I, %x. programify(F(x))) = JOIN(I, F)"
by (simp add: JOIN_def)
subsection{*JN*}
lemma JN_empty [simp]: "JOIN(0, F) = SKIP"
by (unfold JOIN_def, auto)
lemma Init_JN [simp]:
"Init(\<Squnion>i \<in> I. F(i)) = (if I=0 then state else (\<Inter>i \<in> I. Init(F(i))))"
by (simp add: JOIN_def INT_extend_simps del: INT_simps)
lemma Acts_JN [simp]:
"Acts(JOIN(I,F)) = cons(id(state), \<Union>i \<in> I. Acts(F(i)))"
apply (unfold JOIN_def)
apply (auto simp del: INT_simps UN_simps)
apply (rule equalityI)
apply (auto dest: Acts_type [THEN subsetD])
done
lemma AllowedActs_JN [simp]:
"AllowedActs(\<Squnion>i \<in> I. F(i)) =
(if I=0 then Pow(state*state) else (\<Inter>i \<in> I. AllowedActs(F(i))))"
apply (unfold JOIN_def, auto)
apply (rule equalityI)
apply (auto elim!: not_emptyE dest: AllowedActs_type [THEN subsetD])
done
lemma JN_cons [simp]: "(\<Squnion>i \<in> cons(a,I). F(i)) = F(a) Join (\<Squnion>i \<in> I. F(i))"
by (rule program_equalityI, auto)
lemma JN_cong [cong]:
"[| I=J; !!i. i \<in> J ==> F(i) = G(i) |] ==>
(\<Squnion>i \<in> I. F(i)) = (\<Squnion>i \<in> J. G(i))"
by (simp add: JOIN_def)
subsection{*JN laws*}
lemma JN_absorb: "k \<in> I ==>F(k) Join (\<Squnion>i \<in> I. F(i)) = (\<Squnion>i \<in> I. F(i))"
apply (subst JN_cons [symmetric])
apply (auto simp add: cons_absorb)
done
lemma JN_Un: "(\<Squnion>i \<in> I Un J. F(i)) = ((\<Squnion>i \<in> I. F(i)) Join (\<Squnion>i \<in> J. F(i)))"
apply (rule program_equalityI)
apply (simp_all add: UN_Un INT_Un)
apply (simp_all del: INT_simps add: INT_extend_simps, blast)
done
lemma JN_constant: "(\<Squnion>i \<in> I. c) = (if I=0 then SKIP else programify(c))"
by (rule program_equalityI, auto)
lemma JN_Join_distrib:
"(\<Squnion>i \<in> I. F(i) Join G(i)) = (\<Squnion>i \<in> I. F(i)) Join (\<Squnion>i \<in> I. G(i))"
apply (rule program_equalityI)
apply (simp_all add: INT_Int_distrib, blast)
done
lemma JN_Join_miniscope: "(\<Squnion>i \<in> I. F(i) Join G) = ((\<Squnion>i \<in> I. F(i) Join G))"
by (simp add: JN_Join_distrib JN_constant)
text{*Used to prove guarantees_JN_I*}
lemma JN_Join_diff: "i \<in> I==>F(i) Join JOIN(I - {i}, F) = JOIN(I, F)"
apply (rule program_equalityI)
apply (auto elim!: not_emptyE)
done
subsection{*Safety: co, stable, FP*}
(*Fails if I=0 because it collapses to SKIP \<in> A co B, i.e. to A\<subseteq>B. So an
alternative precondition is A\<subseteq>B, but most proofs using this rule require
I to be nonempty for other reasons anyway.*)
lemma JN_constrains:
"i \<in> I==>(\<Squnion>i \<in> I. F(i)) \<in> A co B <-> (\<forall>i \<in> I. programify(F(i)) \<in> A co B)"
apply (unfold constrains_def JOIN_def st_set_def, auto)
prefer 2 apply blast
apply (rename_tac j act y z)
apply (cut_tac F = "F (j) " in Acts_type)
apply (drule_tac x = act in bspec, auto)
done
lemma Join_constrains [iff]:
"(F Join G \<in> A co B) <-> (programify(F) \<in> A co B & programify(G) \<in> A co B)"
by (auto simp add: constrains_def)
lemma Join_unless [iff]:
"(F Join G \<in> A unless B) <->
(programify(F) \<in> A unless B & programify(G) \<in> A unless B)"
by (simp add: Join_constrains unless_def)
(*Analogous weak versions FAIL; see Misra [1994] 5.4.1, Substitution Axiom.
reachable (F Join G) could be much bigger than reachable F, reachable G
*)
lemma Join_constrains_weaken:
"[| F \<in> A co A'; G \<in> B co B' |]
==> F Join G \<in> (A Int B) co (A' Un B')"
apply (subgoal_tac "st_set (A) & st_set (B) & F \<in> program & G \<in> program")
prefer 2 apply (blast dest: constrainsD2, simp)
apply (blast intro: constrains_weaken)
done
(*If I=0, it degenerates to SKIP \<in> state co 0, which is false.*)
lemma JN_constrains_weaken:
assumes major: "(!!i. i \<in> I ==> F(i) \<in> A(i) co A'(i))"
and minor: "i \<in> I"
shows "(\<Squnion>i \<in> I. F(i)) \<in> (\<Inter>i \<in> I. A(i)) co (\<Union>i \<in> I. A'(i))"
apply (cut_tac minor)
apply (simp (no_asm_simp) add: JN_constrains)
apply clarify
apply (rename_tac "j")
apply (frule_tac i = j in major)
apply (frule constrainsD2, simp)
apply (blast intro: constrains_weaken)
done
lemma JN_stable:
"(\<Squnion>i \<in> I. F(i)) \<in> stable(A) <-> ((\<forall>i \<in> I. programify(F(i)) \<in> stable(A)) & st_set(A))"
apply (auto simp add: stable_def constrains_def JOIN_def)
apply (cut_tac F = "F (i) " in Acts_type)
apply (drule_tac x = act in bspec, auto)
done
lemma initially_JN_I:
assumes major: "(!!i. i \<in> I ==>F(i) \<in> initially(A))"
and minor: "i \<in> I"
shows "(\<Squnion>i \<in> I. F(i)) \<in> initially(A)"
apply (cut_tac minor)
apply (auto elim!: not_emptyE simp add: Inter_iff initially_def)
apply (frule_tac i = x in major)
apply (auto simp add: initially_def)
done
lemma invariant_JN_I:
assumes major: "(!!i. i \<in> I ==> F(i) \<in> invariant(A))"
and minor: "i \<in> I"
shows "(\<Squnion>i \<in> I. F(i)) \<in> invariant(A)"
apply (cut_tac minor)
apply (auto intro!: initially_JN_I dest: major simp add: invariant_def JN_stable)
apply (erule_tac V = "i \<in> I" in thin_rl)
apply (frule major)
apply (drule_tac [2] major)
apply (auto simp add: invariant_def)
apply (frule stableD2, force)+
done
lemma Join_stable [iff]:
" (F Join G \<in> stable(A)) <->
(programify(F) \<in> stable(A) & programify(G) \<in> stable(A))"
by (simp add: stable_def)
lemma initially_JoinI [intro!]:
"[| F \<in> initially(A); G \<in> initially(A) |] ==> F Join G \<in> initially(A)"
by (unfold initially_def, auto)
lemma invariant_JoinI:
"[| F \<in> invariant(A); G \<in> invariant(A) |]
==> F Join G \<in> invariant(A)"
apply (subgoal_tac "F \<in> program&G \<in> program")
prefer 2 apply (blast dest: invariantD2)
apply (simp add: invariant_def)
apply (auto intro: Join_in_program)
done
(* Fails if I=0 because \<Inter>i \<in> 0. A(i) = 0 *)
lemma FP_JN: "i \<in> I ==> FP(\<Squnion>i \<in> I. F(i)) = (\<Inter>i \<in> I. FP (programify(F(i))))"
by (auto simp add: FP_def Inter_def st_set_def JN_stable)
subsection{*Progress: transient, ensures*}
lemma JN_transient:
"i \<in> I ==>
(\<Squnion>i \<in> I. F(i)) \<in> transient(A) <-> (\<exists>i \<in> I. programify(F(i)) \<in> transient(A))"
apply (auto simp add: transient_def JOIN_def)
apply (unfold st_set_def)
apply (drule_tac [2] x = act in bspec)
apply (auto dest: Acts_type [THEN subsetD])
done
lemma Join_transient [iff]:
"F Join G \<in> transient(A) <->
(programify(F) \<in> transient(A) | programify(G) \<in> transient(A))"
apply (auto simp add: transient_def Join_def Int_Un_distrib2)
done
lemma Join_transient_I1: "F \<in> transient(A) ==> F Join G \<in> transient(A)"
by (simp add: Join_transient transientD2)
lemma Join_transient_I2: "G \<in> transient(A) ==> F Join G \<in> transient(A)"
by (simp add: Join_transient transientD2)
(*If I=0 it degenerates to (SKIP \<in> A ensures B) = False, i.e. to ~(A\<subseteq>B) *)
lemma JN_ensures:
"i \<in> I ==>
(\<Squnion>i \<in> I. F(i)) \<in> A ensures B <->
((\<forall>i \<in> I. programify(F(i)) \<in> (A-B) co (A Un B)) &
(\<exists>i \<in> I. programify(F(i)) \<in> A ensures B))"
by (auto simp add: ensures_def JN_constrains JN_transient)
lemma Join_ensures:
"F Join G \<in> A ensures B <->
(programify(F) \<in> (A-B) co (A Un B) & programify(G) \<in> (A-B) co (A Un B) &
(programify(F) \<in> transient (A-B) | programify(G) \<in> transient (A-B)))"
apply (unfold ensures_def)
apply (auto simp add: Join_transient)
done
lemma stable_Join_constrains:
"[| F \<in> stable(A); G \<in> A co A' |]
==> F Join G \<in> A co A'"
apply (unfold stable_def constrains_def Join_def st_set_def)
apply (cut_tac F = F in Acts_type)
apply (cut_tac F = G in Acts_type, force)
done
(*Premise for G cannot use Always because F \<in> Stable A is
weaker than G \<in> stable A *)
lemma stable_Join_Always1:
"[| F \<in> stable(A); G \<in> invariant(A) |] ==> F Join G \<in> Always(A)"
apply (subgoal_tac "F \<in> program & G \<in> program & st_set (A) ")
prefer 2 apply (blast dest: invariantD2 stableD2)
apply (simp add: Always_def invariant_def initially_def Stable_eq_stable)
apply (force intro: stable_Int)
done
(*As above, but exchanging the roles of F and G*)
lemma stable_Join_Always2:
"[| F \<in> invariant(A); G \<in> stable(A) |] ==> F Join G \<in> Always(A)"
apply (subst Join_commute)
apply (blast intro: stable_Join_Always1)
done
lemma stable_Join_ensures1:
"[| F \<in> stable(A); G \<in> A ensures B |] ==> F Join G \<in> A ensures B"
apply (subgoal_tac "F \<in> program & G \<in> program & st_set (A) ")
prefer 2 apply (blast dest: stableD2 ensures_type [THEN subsetD])
apply (simp (no_asm_simp) add: Join_ensures)
apply (simp add: stable_def ensures_def)
apply (erule constrains_weaken, auto)
done
(*As above, but exchanging the roles of F and G*)
lemma stable_Join_ensures2:
"[| F \<in> A ensures B; G \<in> stable(A) |] ==> F Join G \<in> A ensures B"
apply (subst Join_commute)
apply (blast intro: stable_Join_ensures1)
done
subsection{*The ok and OK relations*}
lemma ok_SKIP1 [iff]: "SKIP ok F"
by (auto dest: Acts_type [THEN subsetD] simp add: ok_def)
lemma ok_SKIP2 [iff]: "F ok SKIP"
by (auto dest: Acts_type [THEN subsetD] simp add: ok_def)
lemma ok_Join_commute:
"(F ok G & (F Join G) ok H) <-> (G ok H & F ok (G Join H))"
by (auto simp add: ok_def)
lemma ok_commute: "(F ok G) <->(G ok F)"
by (auto simp add: ok_def)
lemmas ok_sym = ok_commute [THEN iffD1, standard]
lemma ok_iff_OK: "OK({<0,F>,<1,G>,<2,H>}, snd) <-> (F ok G & (F Join G) ok H)"
by (simp add: ok_def Join_def OK_def Int_assoc cons_absorb
Int_Un_distrib2 Ball_def, safe, force+)
lemma ok_Join_iff1 [iff]: "F ok (G Join H) <-> (F ok G & F ok H)"
by (auto simp add: ok_def)
lemma ok_Join_iff2 [iff]: "(G Join H) ok F <-> (G ok F & H ok F)"
by (auto simp add: ok_def)
(*useful? Not with the previous two around*)
lemma ok_Join_commute_I: "[| F ok G; (F Join G) ok H |] ==> F ok (G Join H)"
by (auto simp add: ok_def)
lemma ok_JN_iff1 [iff]: "F ok JOIN(I,G) <-> (\<forall>i \<in> I. F ok G(i))"
by (force dest: Acts_type [THEN subsetD] elim!: not_emptyE simp add: ok_def)
lemma ok_JN_iff2 [iff]: "JOIN(I,G) ok F <-> (\<forall>i \<in> I. G(i) ok F)"
apply (auto elim!: not_emptyE simp add: ok_def)
apply (blast dest: Acts_type [THEN subsetD])
done
lemma OK_iff_ok: "OK(I,F) <-> (\<forall>i \<in> I. \<forall>j \<in> I-{i}. F(i) ok (F(j)))"
by (auto simp add: ok_def OK_def)
lemma OK_imp_ok: "[| OK(I,F); i \<in> I; j \<in> I; i\<noteq>j|] ==> F(i) ok F(j)"
by (auto simp add: OK_iff_ok)
lemma OK_0 [iff]: "OK(0,F)"
by (simp add: OK_def)
lemma OK_cons_iff:
"OK(cons(i, I), F) <->
(i \<in> I & OK(I, F)) | (i\<notin>I & OK(I, F) & F(i) ok JOIN(I,F))"
apply (simp add: OK_iff_ok)
apply (blast intro: ok_sym)
done
subsection{*Allowed*}
lemma Allowed_SKIP [simp]: "Allowed(SKIP) = program"
by (auto dest: Acts_type [THEN subsetD] simp add: Allowed_def)
lemma Allowed_Join [simp]:
"Allowed(F Join G) =
Allowed(programify(F)) Int Allowed(programify(G))"
apply (auto simp add: Allowed_def)
done
lemma Allowed_JN [simp]:
"i \<in> I ==>
Allowed(JOIN(I,F)) = (\<Inter>i \<in> I. Allowed(programify(F(i))))"
apply (auto simp add: Allowed_def, blast)
done
lemma ok_iff_Allowed:
"F ok G <-> (programify(F) \<in> Allowed(programify(G)) &
programify(G) \<in> Allowed(programify(F)))"
by (simp add: ok_def Allowed_def)
lemma OK_iff_Allowed:
"OK(I,F) <->
(\<forall>i \<in> I. \<forall>j \<in> I-{i}. programify(F(i)) \<in> Allowed(programify(F(j))))"
apply (auto simp add: OK_iff_ok ok_iff_Allowed)
done
subsection{*safety_prop, for reasoning about given instances of "ok"*}
lemma safety_prop_Acts_iff:
"safety_prop(X) ==> (Acts(G) \<subseteq> cons(id(state), (\<Union>F \<in> X. Acts(F)))) <-> (programify(G) \<in> X)"
apply (simp (no_asm_use) add: safety_prop_def)
apply clarify
apply (case_tac "G \<in> program", simp_all, blast, safe)
prefer 2 apply force
apply (force simp add: programify_def)
done
lemma safety_prop_AllowedActs_iff_Allowed:
"safety_prop(X) ==>
(\<Union>G \<in> X. Acts(G)) \<subseteq> AllowedActs(F) <-> (X \<subseteq> Allowed(programify(F)))"
apply (simp add: Allowed_def safety_prop_Acts_iff [THEN iff_sym]
safety_prop_def, blast)
done
lemma Allowed_eq:
"safety_prop(X) ==> Allowed(mk_program(init, acts, \<Union>F \<in> X. Acts(F))) = X"
apply (subgoal_tac "cons (id (state), Union (RepFun (X, Acts)) Int Pow (state * state)) = Union (RepFun (X, Acts))")
apply (rule_tac [2] equalityI)
apply (simp del: UN_simps add: Allowed_def safety_prop_Acts_iff safety_prop_def, auto)
apply (force dest: Acts_type [THEN subsetD] simp add: safety_prop_def)+
done
lemma def_prg_Allowed:
"[| F == mk_program (init, acts, \<Union>F \<in> X. Acts(F)); safety_prop(X) |]
==> Allowed(F) = X"
by (simp add: Allowed_eq)
(*For safety_prop to hold, the property must be satisfiable!*)
lemma safety_prop_constrains [iff]:
"safety_prop(A co B) <-> (A \<subseteq> B & st_set(A))"
by (simp add: safety_prop_def constrains_def st_set_def, blast)
(* To be used with resolution *)
lemma safety_prop_constrainsI [iff]:
"[| A\<subseteq>B; st_set(A) |] ==>safety_prop(A co B)"
by auto
lemma safety_prop_stable [iff]: "safety_prop(stable(A)) <-> st_set(A)"
by (simp add: stable_def)
lemma safety_prop_stableI: "st_set(A) ==> safety_prop(stable(A))"
by auto
lemma safety_prop_Int [simp]:
"[| safety_prop(X) ; safety_prop(Y) |] ==> safety_prop(X Int Y)"
apply (simp add: safety_prop_def, safe, blast)
apply (drule_tac [2] B = "Union (RepFun (X Int Y, Acts))" and C = "Union (RepFun (Y, Acts))" in subset_trans)
apply (drule_tac B = "Union (RepFun (X Int Y, Acts))" and C = "Union (RepFun (X, Acts))" in subset_trans)
apply blast+
done
(* If I=0 the conclusion becomes safety_prop(0) which is false *)
lemma safety_prop_Inter:
assumes major: "(!!i. i \<in> I ==>safety_prop(X(i)))"
and minor: "i \<in> I"
shows "safety_prop(\<Inter>i \<in> I. X(i))"
apply (simp add: safety_prop_def)
apply (cut_tac minor, safe)
apply (simp (no_asm_use) add: Inter_iff)
apply clarify
apply (frule major)
apply (drule_tac [2] i = xa in major)
apply (frule_tac [4] i = xa in major)
apply (auto simp add: safety_prop_def)
apply (drule_tac B = "Union (RepFun (Inter (RepFun (I, X)), Acts))" and C = "Union (RepFun (X (xa), Acts))" in subset_trans)
apply blast+
done
lemma def_UNION_ok_iff:
"[| F == mk_program(init,acts, \<Union>G \<in> X. Acts(G)); safety_prop(X) |]
==> F ok G <-> (programify(G) \<in> X & acts Int Pow(state*state) \<subseteq> AllowedActs(G))"
apply (unfold ok_def)
apply (drule_tac G = G in safety_prop_Acts_iff)
apply (cut_tac F = G in AllowedActs_type)
apply (cut_tac F = G in Acts_type, auto)
done
end