src/Pure/conv.ML
author wenzelm
Tue, 12 Mar 2024 15:57:25 +0100
changeset 79873 6c19c29ddcbe
parent 74560 5c8177fd1295
permissions -rw-r--r--
clarified modules;

(*  Title:      Pure/conv.ML
    Author:     Amine Chaieb, TU Muenchen
    Author:     Sascha Boehme, TU Muenchen
    Author:     Makarius

Conversions: primitive equality reasoning.
*)

infix 1 then_conv;
infix 0 else_conv;

signature BASIC_CONV =
sig
  val then_conv: conv * conv -> conv
  val else_conv: conv * conv -> conv
end;

signature CONV =
sig
  include BASIC_CONV
  val no_conv: conv
  val all_conv: conv
  val first_conv: conv list -> conv
  val every_conv: conv list -> conv
  val try_conv: conv -> conv
  val repeat_conv: conv -> conv
  val changed_conv: conv -> conv
  val repeat_changed_conv: conv -> conv
  val cache_conv: conv -> conv
  val abs_conv: (cterm * Proof.context -> conv) -> Proof.context -> conv
  val combination_conv: conv -> conv -> conv
  val comb_conv: conv -> conv
  val arg_conv: conv -> conv
  val fun_conv: conv -> conv
  val arg1_conv: conv -> conv
  val fun2_conv: conv -> conv
  val binop_conv: conv -> conv
  val binder_conv: (cterm * Proof.context -> conv) -> Proof.context -> conv
  val forall_conv: (cterm * Proof.context -> conv) -> Proof.context -> conv
  val implies_conv: conv -> conv -> conv
  val implies_concl_conv: conv -> conv
  val rewr_conv: thm -> conv
  val rewrs_conv: thm list -> conv
  val bottom_rewrs_conv: thm list -> Proof.context -> conv
  val top_rewrs_conv: thm list -> Proof.context -> conv
  val top_sweep_rewrs_conv: thm list -> Proof.context -> conv
  val sub_conv: (Proof.context -> conv) -> Proof.context -> conv
  val bottom_conv: (Proof.context -> conv) -> Proof.context -> conv
  val top_conv: (Proof.context -> conv) -> Proof.context -> conv
  val top_sweep_conv: (Proof.context -> conv) -> Proof.context -> conv
  val params_conv: int -> (Proof.context -> conv) -> Proof.context -> conv
  val prems_conv: int -> conv -> conv
  val concl_conv: int -> conv -> conv
  val fconv_rule: conv -> thm -> thm
  val gconv_rule: conv -> int -> thm -> thm
end;

structure Conv: CONV =
struct

(* basic conversionals *)

fun no_conv _ = raise CTERM ("no conversion", []);
val all_conv = Thm.reflexive;

fun (cv1 then_conv cv2) ct =
  let
    val eq1 = cv1 ct;
    val eq2 = cv2 (Thm.rhs_of eq1);
  in
    if Thm.is_reflexive eq1 then eq2
    else if Thm.is_reflexive eq2 then eq1
    else Thm.transitive eq1 eq2
  end;

fun (cv1 else_conv cv2) ct =
  (cv1 ct
    handle THM _ => cv2 ct
      | CTERM _ => cv2 ct
      | TERM _ => cv2 ct
      | TYPE _ => cv2 ct);

fun first_conv cvs = fold_rev (curry op else_conv) cvs no_conv;
fun every_conv cvs = fold_rev (curry op then_conv) cvs all_conv;

fun try_conv cv = cv else_conv all_conv;
fun repeat_conv cv ct = try_conv (cv then_conv repeat_conv cv) ct;

fun changed_conv conv ct =
  let val th = conv ct
  in if Thm.is_reflexive th then raise CTERM ("changed_conv", [ct]) else th end;

val repeat_changed_conv = repeat_conv o changed_conv;

fun cache_conv (cv: conv) = Ctermtab.cterm_cache cv;



(** Pure conversions **)

(* lambda terms *)

fun abs_conv cv ctxt ct =
  (case Thm.term_of ct of
    Abs (a, _, _) =>
      let
        val ((v, ct'), ctxt') = Variable.dest_abs_cterm ct ctxt;
        val eq = cv (v, ctxt') ct';
      in if Thm.is_reflexive eq then all_conv ct else Thm.abstract_rule a v eq end
  | _ => raise CTERM ("abs_conv", [ct]));

fun combination_conv cv1 cv2 ct =
  let val (ct1, ct2) = Thm.dest_comb ct
  in Thm.combination (cv1 ct1) (cv2 ct2) end;

fun comb_conv cv = combination_conv cv cv;
fun arg_conv cv = combination_conv all_conv cv;
fun fun_conv cv = combination_conv cv all_conv;

val arg1_conv = fun_conv o arg_conv;
val fun2_conv = fun_conv o fun_conv;

fun binop_conv cv = combination_conv (arg_conv cv) cv;

fun binder_conv cv ctxt = arg_conv (abs_conv cv ctxt);


(* subterm structure *)

(*cf. SUB_CONV in HOL*)
fun sub_conv conv ctxt =
  comb_conv (conv ctxt) else_conv
  abs_conv (conv o snd) ctxt else_conv
  all_conv;

(*cf. BOTTOM_CONV in HOL*)
fun bottom_conv conv ctxt ct =
  (sub_conv (bottom_conv conv) ctxt then_conv conv ctxt) ct;

(*cf. TOP_CONV in HOL*)
fun top_conv conv ctxt ct =
  (conv ctxt then_conv sub_conv (top_conv conv) ctxt) ct;

(*cf. TOP_SWEEP_CONV in HOL*)
fun top_sweep_conv conv ctxt ct =
  (conv ctxt else_conv sub_conv (top_sweep_conv conv) ctxt) ct;


(* primitive logic *)

fun forall_conv cv ctxt ct =
  (case Thm.term_of ct of
    Const ("Pure.all", _) $ Abs _ => arg_conv (abs_conv cv ctxt) ct
  | _ => raise CTERM ("forall_conv", [ct]));

fun implies_conv cv1 cv2 ct =
  (case Thm.term_of ct of
    Const ("Pure.imp", _) $ _ $ _ => combination_conv (arg_conv cv1) cv2 ct
  | _ => raise CTERM ("implies_conv", [ct]));

fun implies_concl_conv cv ct =
  (case Thm.term_of ct of
    Const ("Pure.imp", _) $ _ $ _ => arg_conv cv ct
  | _ => raise CTERM ("implies_concl_conv", [ct]));


(* rewrite steps *)

(*cf. REWR_CONV in HOL*)
fun rewr_conv rule ct =
  let
    val rule1 = Thm.incr_indexes (Thm.maxidx_of_cterm ct + 1) rule;
    val lhs = Thm.lhs_of rule1;
    val rule2 = Thm.rename_boundvars (Thm.term_of lhs) (Thm.term_of ct) rule1;
    val rule3 =
      Thm.instantiate (Thm.match (lhs, ct)) rule2
        handle Pattern.MATCH => raise CTERM ("rewr_conv", [lhs, ct]);
    val rule4 =
      if Thm.lhs_of rule3 aconvc ct then rule3
      else
        let val ceq = Thm.dest_fun2 (Thm.cprop_of rule3)
        in rule3 COMP Thm.trivial (Thm.mk_binop ceq ct (Thm.rhs_of rule3)) end;
  in Thm.transitive rule4 (Thm.beta_conversion true (Thm.rhs_of rule4)) end;

fun rewrs_conv rules = first_conv (map rewr_conv rules);

fun bottom_rewrs_conv rewrs = bottom_conv (K (try_conv (rewrs_conv rewrs)));
fun top_rewrs_conv rewrs = top_conv (K (try_conv (rewrs_conv rewrs)));
fun top_sweep_rewrs_conv rewrs = top_sweep_conv (K (rewrs_conv rewrs));


(* conversions on HHF rules *)

(*rewrite B in \<And>x1 ... xn. B*)
fun params_conv n cv ctxt ct =
  if n <> 0 andalso Logic.is_all (Thm.term_of ct)
  then arg_conv (abs_conv (params_conv (n - 1) cv o #2) ctxt) ct
  else cv ctxt ct;

(*rewrite the A's in A1 \<Longrightarrow> ... \<Longrightarrow> An \<Longrightarrow> B*)
fun prems_conv 0 _ ct = all_conv ct
  | prems_conv n cv ct =
      (case try Thm.dest_implies ct of
        NONE => all_conv ct
      | SOME (A, B) => Drule.imp_cong_rule (cv A) (prems_conv (n - 1) cv B));

(*rewrite B in A1 \<Longrightarrow> ... \<Longrightarrow> An \<Longrightarrow> B*)
fun concl_conv 0 cv ct = cv ct
  | concl_conv n cv ct =
      (case try Thm.dest_implies ct of
        NONE => cv ct
      | SOME (A, B) => Drule.imp_cong_rule (all_conv A) (concl_conv (n - 1) cv B));


(* conversions as inference rules *)

(*forward conversion, cf. FCONV_RULE in LCF*)
fun fconv_rule cv th =
  let val eq = cv (Thm.cprop_of th) in
    if Thm.is_reflexive eq then th
    else Thm.equal_elim eq th
  end;

(*goal conversion*)
fun gconv_rule cv i th =
  (case try (Thm.cprem_of th) i of
    SOME ct =>
      let val eq = cv ct in
        if Thm.is_reflexive eq then th
        else Drule.with_subgoal i (fconv_rule (arg1_conv (K eq))) th
      end
  | NONE => raise THM ("gconv_rule", i, [th]));

end;

structure Basic_Conv: BASIC_CONV = Conv;
open Basic_Conv;