(* Author: Tobias Nipkow *)
section \<open>Lists Sorted wrt $<$\<close>
theory Sorted_Less
imports Less_False
begin
hide_const sorted
text \<open>Is a list sorted without duplicates, i.e., wrt @{text"<"}?.\<close>
abbreviation sorted :: "'a::linorder list \<Rightarrow> bool" where
"sorted \<equiv> sorted_wrt (<)"
lemmas sorted_wrt_Cons = sorted_wrt.simps(2)
text \<open>The definition of @{const sorted_wrt} relates each element to all the elements after it.
This causes a blowup of the formulas. Thus we simplify matters by only comparing adjacent elements.\<close>
declare
sorted_wrt.simps(2)[simp del]
sorted_wrt1[simp] sorted_wrt2[OF transp_less, simp]
lemma sorted_cons: "sorted (x#xs) \<Longrightarrow> sorted xs"
by(simp add: sorted_wrt_Cons)
lemma sorted_cons': "ASSUMPTION (sorted (x#xs)) \<Longrightarrow> sorted xs"
by(rule ASSUMPTION_D [THEN sorted_cons])
lemma sorted_snoc: "sorted (xs @ [y]) \<Longrightarrow> sorted xs"
by(simp add: sorted_wrt_append)
lemma sorted_snoc': "ASSUMPTION (sorted (xs @ [y])) \<Longrightarrow> sorted xs"
by(rule ASSUMPTION_D [THEN sorted_snoc])
lemma sorted_mid_iff:
"sorted(xs @ y # ys) = (sorted(xs @ [y]) \<and> sorted(y # ys))"
by(fastforce simp add: sorted_wrt_Cons sorted_wrt_append)
lemma sorted_mid_iff2:
"sorted(x # xs @ y # ys) =
(sorted(x # xs) \<and> x < y \<and> sorted(xs @ [y]) \<and> sorted(y # ys))"
by(fastforce simp add: sorted_wrt_Cons sorted_wrt_append)
lemma sorted_mid_iff': "NO_MATCH [] ys \<Longrightarrow>
sorted(xs @ y # ys) = (sorted(xs @ [y]) \<and> sorted(y # ys))"
by(rule sorted_mid_iff)
lemmas sorted_lems = sorted_mid_iff' sorted_mid_iff2 sorted_cons' sorted_snoc'
text\<open>Splay trees need two additional @{const sorted} lemmas:\<close>
lemma sorted_snoc_le:
"ASSUMPTION(sorted(xs @ [x])) \<Longrightarrow> x \<le> y \<Longrightarrow> sorted (xs @ [y])"
by (auto simp add: sorted_wrt_append ASSUMPTION_def)
lemma sorted_Cons_le:
"ASSUMPTION(sorted(x # xs)) \<Longrightarrow> y \<le> x \<Longrightarrow> sorted (y # xs)"
by (auto simp add: sorted_wrt_Cons ASSUMPTION_def)
end