(* Title: HOL/Finite_Set.thy
Author: Tobias Nipkow
Author: Lawrence C Paulson
Author: Markus Wenzel
Author: Jeremy Avigad
Author: Andrei Popescu
*)
section \<open>Finite sets\<close>
theory Finite_Set
imports Product_Type Sum_Type Fields
begin
subsection \<open>Predicate for finite sets\<close>
context notes [[inductive_internals]]
begin
inductive finite :: "'a set \<Rightarrow> bool"
where
emptyI [simp, intro!]: "finite {}"
| insertI [simp, intro!]: "finite A \<Longrightarrow> finite (insert a A)"
end
simproc_setup finite_Collect ("finite (Collect P)") = \<open>K Set_Comprehension_Pointfree.simproc\<close>
declare [[simproc del: finite_Collect]]
lemma finite_induct [case_names empty insert, induct set: finite]:
\<comment> \<open>Discharging \<open>x \<notin> F\<close> entails extra work.\<close>
assumes "finite F"
assumes "P {}"
and insert: "\<And>x F. finite F \<Longrightarrow> x \<notin> F \<Longrightarrow> P F \<Longrightarrow> P (insert x F)"
shows "P F"
using \<open>finite F\<close>
proof induct
show "P {}" by fact
next
fix x F
assume F: "finite F" and P: "P F"
show "P (insert x F)"
proof cases
assume "x \<in> F"
then have "insert x F = F" by (rule insert_absorb)
with P show ?thesis by (simp only:)
next
assume "x \<notin> F"
from F this P show ?thesis by (rule insert)
qed
qed
lemma infinite_finite_induct [case_names infinite empty insert]:
assumes infinite: "\<And>A. \<not> finite A \<Longrightarrow> P A"
and empty: "P {}"
and insert: "\<And>x F. finite F \<Longrightarrow> x \<notin> F \<Longrightarrow> P F \<Longrightarrow> P (insert x F)"
shows "P A"
proof (cases "finite A")
case False
with infinite show ?thesis .
next
case True
then show ?thesis by (induct A) (fact empty insert)+
qed
subsubsection \<open>Choice principles\<close>
lemma ex_new_if_finite: \<comment> \<open>does not depend on def of finite at all\<close>
assumes "\<not> finite (UNIV :: 'a set)" and "finite A"
shows "\<exists>a::'a. a \<notin> A"
proof -
from assms have "A \<noteq> UNIV" by blast
then show ?thesis by blast
qed
text \<open>A finite choice principle. Does not need the SOME choice operator.\<close>
lemma finite_set_choice: "finite A \<Longrightarrow> \<forall>x\<in>A. \<exists>y. P x y \<Longrightarrow> \<exists>f. \<forall>x\<in>A. P x (f x)"
proof (induct rule: finite_induct)
case empty
then show ?case by simp
next
case (insert a A)
then obtain f b where f: "\<forall>x\<in>A. P x (f x)" and ab: "P a b"
by auto
show ?case (is "\<exists>f. ?P f")
proof
show "?P (\<lambda>x. if x = a then b else f x)"
using f ab by auto
qed
qed
subsubsection \<open>Finite sets are the images of initial segments of natural numbers\<close>
lemma finite_imp_nat_seg_image_inj_on:
assumes "finite A"
shows "\<exists>(n::nat) f. A = f ` {i. i < n} \<and> inj_on f {i. i < n}"
using assms
proof induct
case empty
show ?case
proof
show "\<exists>f. {} = f ` {i::nat. i < 0} \<and> inj_on f {i. i < 0}"
by simp
qed
next
case (insert a A)
have notinA: "a \<notin> A" by fact
from insert.hyps obtain n f where "A = f ` {i::nat. i < n}" "inj_on f {i. i < n}"
by blast
then have "insert a A = f(n:=a) ` {i. i < Suc n}" and "inj_on (f(n:=a)) {i. i < Suc n}"
using notinA by (auto simp add: image_def Ball_def inj_on_def less_Suc_eq)
then show ?case by blast
qed
lemma nat_seg_image_imp_finite: "A = f ` {i::nat. i < n} \<Longrightarrow> finite A"
proof (induct n arbitrary: A)
case 0
then show ?case by simp
next
case (Suc n)
let ?B = "f ` {i. i < n}"
have finB: "finite ?B" by (rule Suc.hyps[OF refl])
show ?case
proof (cases "\<exists>k<n. f n = f k")
case True
then have "A = ?B"
using Suc.prems by (auto simp:less_Suc_eq)
then show ?thesis
using finB by simp
next
case False
then have "A = insert (f n) ?B"
using Suc.prems by (auto simp:less_Suc_eq)
then show ?thesis using finB by simp
qed
qed
lemma finite_conv_nat_seg_image: "finite A \<longleftrightarrow> (\<exists>n f. A = f ` {i::nat. i < n})"
by (blast intro: nat_seg_image_imp_finite dest: finite_imp_nat_seg_image_inj_on)
lemma finite_imp_inj_to_nat_seg:
assumes "finite A"
shows "\<exists>f n. f ` A = {i::nat. i < n} \<and> inj_on f A"
proof -
from finite_imp_nat_seg_image_inj_on [OF \<open>finite A\<close>]
obtain f and n :: nat where bij: "bij_betw f {i. i<n} A"
by (auto simp: bij_betw_def)
let ?f = "the_inv_into {i. i<n} f"
have "inj_on ?f A \<and> ?f ` A = {i. i<n}"
by (fold bij_betw_def) (rule bij_betw_the_inv_into[OF bij])
then show ?thesis by blast
qed
lemma finite_Collect_less_nat [iff]: "finite {n::nat. n < k}"
by (fastforce simp: finite_conv_nat_seg_image)
lemma finite_Collect_le_nat [iff]: "finite {n::nat. n \<le> k}"
by (simp add: le_eq_less_or_eq Collect_disj_eq)
subsection \<open>Finiteness and common set operations\<close>
lemma rev_finite_subset: "finite B \<Longrightarrow> A \<subseteq> B \<Longrightarrow> finite A"
proof (induct arbitrary: A rule: finite_induct)
case empty
then show ?case by simp
next
case (insert x F A)
have A: "A \<subseteq> insert x F" and r: "A - {x} \<subseteq> F \<Longrightarrow> finite (A - {x})"
by fact+
show "finite A"
proof cases
assume x: "x \<in> A"
with A have "A - {x} \<subseteq> F" by (simp add: subset_insert_iff)
with r have "finite (A - {x})" .
then have "finite (insert x (A - {x}))" ..
also have "insert x (A - {x}) = A"
using x by (rule insert_Diff)
finally show ?thesis .
next
show ?thesis when "A \<subseteq> F"
using that by fact
assume "x \<notin> A"
with A show "A \<subseteq> F"
by (simp add: subset_insert_iff)
qed
qed
lemma finite_subset: "A \<subseteq> B \<Longrightarrow> finite B \<Longrightarrow> finite A"
by (rule rev_finite_subset)
lemma finite_UnI:
assumes "finite F" and "finite G"
shows "finite (F \<union> G)"
using assms by induct simp_all
lemma finite_Un [iff]: "finite (F \<union> G) \<longleftrightarrow> finite F \<and> finite G"
by (blast intro: finite_UnI finite_subset [of _ "F \<union> G"])
lemma finite_insert [simp]: "finite (insert a A) \<longleftrightarrow> finite A"
proof -
have "finite {a} \<and> finite A \<longleftrightarrow> finite A" by simp
then have "finite ({a} \<union> A) \<longleftrightarrow> finite A" by (simp only: finite_Un)
then show ?thesis by simp
qed
lemma finite_Int [simp, intro]: "finite F \<or> finite G \<Longrightarrow> finite (F \<inter> G)"
by (blast intro: finite_subset)
lemma finite_Collect_conjI [simp, intro]:
"finite {x. P x} \<or> finite {x. Q x} \<Longrightarrow> finite {x. P x \<and> Q x}"
by (simp add: Collect_conj_eq)
lemma finite_Collect_disjI [simp]:
"finite {x. P x \<or> Q x} \<longleftrightarrow> finite {x. P x} \<and> finite {x. Q x}"
by (simp add: Collect_disj_eq)
lemma finite_Diff [simp, intro]: "finite A \<Longrightarrow> finite (A - B)"
by (rule finite_subset, rule Diff_subset)
lemma finite_Diff2 [simp]:
assumes "finite B"
shows "finite (A - B) \<longleftrightarrow> finite A"
proof -
have "finite A \<longleftrightarrow> finite ((A - B) \<union> (A \<inter> B))"
by (simp add: Un_Diff_Int)
also have "\<dots> \<longleftrightarrow> finite (A - B)"
using \<open>finite B\<close> by simp
finally show ?thesis ..
qed
lemma finite_Diff_insert [iff]: "finite (A - insert a B) \<longleftrightarrow> finite (A - B)"
proof -
have "finite (A - B) \<longleftrightarrow> finite (A - B - {a})" by simp
moreover have "A - insert a B = A - B - {a}" by auto
ultimately show ?thesis by simp
qed
lemma finite_compl [simp]:
"finite (A :: 'a set) \<Longrightarrow> finite (- A) \<longleftrightarrow> finite (UNIV :: 'a set)"
by (simp add: Compl_eq_Diff_UNIV)
lemma finite_Collect_not [simp]:
"finite {x :: 'a. P x} \<Longrightarrow> finite {x. \<not> P x} \<longleftrightarrow> finite (UNIV :: 'a set)"
by (simp add: Collect_neg_eq)
lemma finite_Union [simp, intro]:
"finite A \<Longrightarrow> (\<And>M. M \<in> A \<Longrightarrow> finite M) \<Longrightarrow> finite (\<Union>A)"
by (induct rule: finite_induct) simp_all
lemma finite_UN_I [intro]:
"finite A \<Longrightarrow> (\<And>a. a \<in> A \<Longrightarrow> finite (B a)) \<Longrightarrow> finite (\<Union>a\<in>A. B a)"
by (induct rule: finite_induct) simp_all
lemma finite_UN [simp]: "finite A \<Longrightarrow> finite (\<Union>(B ` A)) \<longleftrightarrow> (\<forall>x\<in>A. finite (B x))"
by (blast intro: finite_subset)
lemma finite_Inter [intro]: "\<exists>A\<in>M. finite A \<Longrightarrow> finite (\<Inter>M)"
by (blast intro: Inter_lower finite_subset)
lemma finite_INT [intro]: "\<exists>x\<in>I. finite (A x) \<Longrightarrow> finite (\<Inter>x\<in>I. A x)"
by (blast intro: INT_lower finite_subset)
lemma finite_imageI [simp, intro]: "finite F \<Longrightarrow> finite (h ` F)"
by (induct rule: finite_induct) simp_all
lemma finite_image_set [simp]: "finite {x. P x} \<Longrightarrow> finite {f x |x. P x}"
by (simp add: image_Collect [symmetric])
lemma finite_image_set2:
"finite {x. P x} \<Longrightarrow> finite {y. Q y} \<Longrightarrow> finite {f x y |x y. P x \<and> Q y}"
by (rule finite_subset [where B = "\<Union>x \<in> {x. P x}. \<Union>y \<in> {y. Q y}. {f x y}"]) auto
lemma finite_imageD:
assumes "finite (f ` A)" and "inj_on f A"
shows "finite A"
using assms
proof (induct "f ` A" arbitrary: A)
case empty
then show ?case by simp
next
case (insert x B)
then have B_A: "insert x B = f ` A"
by simp
then obtain y where "x = f y" and "y \<in> A"
by blast
from B_A \<open>x \<notin> B\<close> have "B = f ` A - {x}"
by blast
with B_A \<open>x \<notin> B\<close> \<open>x = f y\<close> \<open>inj_on f A\<close> \<open>y \<in> A\<close> have "B = f ` (A - {y})"
by (simp add: inj_on_image_set_diff)
moreover from \<open>inj_on f A\<close> have "inj_on f (A - {y})"
by (rule inj_on_diff)
ultimately have "finite (A - {y})"
by (rule insert.hyps)
then show "finite A"
by simp
qed
lemma finite_image_iff: "inj_on f A \<Longrightarrow> finite (f ` A) \<longleftrightarrow> finite A"
using finite_imageD by blast
lemma finite_surj: "finite A \<Longrightarrow> B \<subseteq> f ` A \<Longrightarrow> finite B"
by (erule finite_subset) (rule finite_imageI)
lemma finite_range_imageI: "finite (range g) \<Longrightarrow> finite (range (\<lambda>x. f (g x)))"
by (drule finite_imageI) (simp add: range_composition)
lemma finite_subset_image:
assumes "finite B"
shows "B \<subseteq> f ` A \<Longrightarrow> \<exists>C\<subseteq>A. finite C \<and> B = f ` C"
using assms
proof induct
case empty
then show ?case by simp
next
case insert
then show ?case
by (clarsimp simp del: image_insert simp add: image_insert [symmetric]) blast
qed
lemma all_subset_image: "(\<forall>B. B \<subseteq> f ` A \<longrightarrow> P B) \<longleftrightarrow> (\<forall>B. B \<subseteq> A \<longrightarrow> P(f ` B))"
by (safe elim!: subset_imageE) (use image_mono in \<open>blast+\<close>) (* slow *)
lemma all_finite_subset_image:
"(\<forall>B. finite B \<and> B \<subseteq> f ` A \<longrightarrow> P B) \<longleftrightarrow> (\<forall>B. finite B \<and> B \<subseteq> A \<longrightarrow> P (f ` B))"
proof safe
fix B :: "'a set"
assume B: "finite B" "B \<subseteq> f ` A" and P: "\<forall>B. finite B \<and> B \<subseteq> A \<longrightarrow> P (f ` B)"
show "P B"
using finite_subset_image [OF B] P by blast
qed blast
lemma ex_finite_subset_image:
"(\<exists>B. finite B \<and> B \<subseteq> f ` A \<and> P B) \<longleftrightarrow> (\<exists>B. finite B \<and> B \<subseteq> A \<and> P (f ` B))"
proof safe
fix B :: "'a set"
assume B: "finite B" "B \<subseteq> f ` A" and "P B"
show "\<exists>B. finite B \<and> B \<subseteq> A \<and> P (f ` B)"
using finite_subset_image [OF B] \<open>P B\<close> by blast
qed blast
lemma finite_vimage_IntI: "finite F \<Longrightarrow> inj_on h A \<Longrightarrow> finite (h -` F \<inter> A)"
proof (induct rule: finite_induct)
case (insert x F)
then show ?case
by (simp add: vimage_insert [of h x F] finite_subset [OF inj_on_vimage_singleton] Int_Un_distrib2)
qed simp
lemma finite_finite_vimage_IntI:
assumes "finite F"
and "\<And>y. y \<in> F \<Longrightarrow> finite ((h -` {y}) \<inter> A)"
shows "finite (h -` F \<inter> A)"
proof -
have *: "h -` F \<inter> A = (\<Union> y\<in>F. (h -` {y}) \<inter> A)"
by blast
show ?thesis
by (simp only: * assms finite_UN_I)
qed
lemma finite_vimageI: "finite F \<Longrightarrow> inj h \<Longrightarrow> finite (h -` F)"
using finite_vimage_IntI[of F h UNIV] by auto
lemma finite_vimageD': "finite (f -` A) \<Longrightarrow> A \<subseteq> range f \<Longrightarrow> finite A"
by (auto simp add: subset_image_iff intro: finite_subset[rotated])
lemma finite_vimageD: "finite (h -` F) \<Longrightarrow> surj h \<Longrightarrow> finite F"
by (auto dest: finite_vimageD')
lemma finite_vimage_iff: "bij h \<Longrightarrow> finite (h -` F) \<longleftrightarrow> finite F"
unfolding bij_def by (auto elim: finite_vimageD finite_vimageI)
lemma finite_Collect_bex [simp]:
assumes "finite A"
shows "finite {x. \<exists>y\<in>A. Q x y} \<longleftrightarrow> (\<forall>y\<in>A. finite {x. Q x y})"
proof -
have "{x. \<exists>y\<in>A. Q x y} = (\<Union>y\<in>A. {x. Q x y})" by auto
with assms show ?thesis by simp
qed
lemma finite_Collect_bounded_ex [simp]:
assumes "finite {y. P y}"
shows "finite {x. \<exists>y. P y \<and> Q x y} \<longleftrightarrow> (\<forall>y. P y \<longrightarrow> finite {x. Q x y})"
proof -
have "{x. \<exists>y. P y \<and> Q x y} = (\<Union>y\<in>{y. P y}. {x. Q x y})"
by auto
with assms show ?thesis
by simp
qed
lemma finite_Plus: "finite A \<Longrightarrow> finite B \<Longrightarrow> finite (A <+> B)"
by (simp add: Plus_def)
lemma finite_PlusD:
fixes A :: "'a set" and B :: "'b set"
assumes fin: "finite (A <+> B)"
shows "finite A" "finite B"
proof -
have "Inl ` A \<subseteq> A <+> B"
by auto
then have "finite (Inl ` A :: ('a + 'b) set)"
using fin by (rule finite_subset)
then show "finite A"
by (rule finite_imageD) (auto intro: inj_onI)
next
have "Inr ` B \<subseteq> A <+> B"
by auto
then have "finite (Inr ` B :: ('a + 'b) set)"
using fin by (rule finite_subset)
then show "finite B"
by (rule finite_imageD) (auto intro: inj_onI)
qed
lemma finite_Plus_iff [simp]: "finite (A <+> B) \<longleftrightarrow> finite A \<and> finite B"
by (auto intro: finite_PlusD finite_Plus)
lemma finite_Plus_UNIV_iff [simp]:
"finite (UNIV :: ('a + 'b) set) \<longleftrightarrow> finite (UNIV :: 'a set) \<and> finite (UNIV :: 'b set)"
by (subst UNIV_Plus_UNIV [symmetric]) (rule finite_Plus_iff)
lemma finite_SigmaI [simp, intro]:
"finite A \<Longrightarrow> (\<And>a. a\<in>A \<Longrightarrow> finite (B a)) \<Longrightarrow> finite (SIGMA a:A. B a)"
unfolding Sigma_def by blast
lemma finite_SigmaI2:
assumes "finite {x\<in>A. B x \<noteq> {}}"
and "\<And>a. a \<in> A \<Longrightarrow> finite (B a)"
shows "finite (Sigma A B)"
proof -
from assms have "finite (Sigma {x\<in>A. B x \<noteq> {}} B)"
by auto
also have "Sigma {x:A. B x \<noteq> {}} B = Sigma A B"
by auto
finally show ?thesis .
qed
lemma finite_cartesian_product: "finite A \<Longrightarrow> finite B \<Longrightarrow> finite (A \<times> B)"
by (rule finite_SigmaI)
lemma finite_Prod_UNIV:
"finite (UNIV :: 'a set) \<Longrightarrow> finite (UNIV :: 'b set) \<Longrightarrow> finite (UNIV :: ('a \<times> 'b) set)"
by (simp only: UNIV_Times_UNIV [symmetric] finite_cartesian_product)
lemma finite_cartesian_productD1:
assumes "finite (A \<times> B)" and "B \<noteq> {}"
shows "finite A"
proof -
from assms obtain n f where "A \<times> B = f ` {i::nat. i < n}"
by (auto simp add: finite_conv_nat_seg_image)
then have "fst ` (A \<times> B) = fst ` f ` {i::nat. i < n}"
by simp
with \<open>B \<noteq> {}\<close> have "A = (fst \<circ> f) ` {i::nat. i < n}"
by (simp add: image_comp)
then have "\<exists>n f. A = f ` {i::nat. i < n}"
by blast
then show ?thesis
by (auto simp add: finite_conv_nat_seg_image)
qed
lemma finite_cartesian_productD2:
assumes "finite (A \<times> B)" and "A \<noteq> {}"
shows "finite B"
proof -
from assms obtain n f where "A \<times> B = f ` {i::nat. i < n}"
by (auto simp add: finite_conv_nat_seg_image)
then have "snd ` (A \<times> B) = snd ` f ` {i::nat. i < n}"
by simp
with \<open>A \<noteq> {}\<close> have "B = (snd \<circ> f) ` {i::nat. i < n}"
by (simp add: image_comp)
then have "\<exists>n f. B = f ` {i::nat. i < n}"
by blast
then show ?thesis
by (auto simp add: finite_conv_nat_seg_image)
qed
lemma finite_cartesian_product_iff:
"finite (A \<times> B) \<longleftrightarrow> (A = {} \<or> B = {} \<or> (finite A \<and> finite B))"
by (auto dest: finite_cartesian_productD1 finite_cartesian_productD2 finite_cartesian_product)
lemma finite_prod:
"finite (UNIV :: ('a \<times> 'b) set) \<longleftrightarrow> finite (UNIV :: 'a set) \<and> finite (UNIV :: 'b set)"
using finite_cartesian_product_iff[of UNIV UNIV] by simp
lemma finite_Pow_iff [iff]: "finite (Pow A) \<longleftrightarrow> finite A"
proof
assume "finite (Pow A)"
then have "finite ((\<lambda>x. {x}) ` A)"
by (blast intro: finite_subset) (* somewhat slow *)
then show "finite A"
by (rule finite_imageD [unfolded inj_on_def]) simp
next
assume "finite A"
then show "finite (Pow A)"
by induct (simp_all add: Pow_insert)
qed
corollary finite_Collect_subsets [simp, intro]: "finite A \<Longrightarrow> finite {B. B \<subseteq> A}"
by (simp add: Pow_def [symmetric])
lemma finite_set: "finite (UNIV :: 'a set set) \<longleftrightarrow> finite (UNIV :: 'a set)"
by (simp only: finite_Pow_iff Pow_UNIV[symmetric])
lemma finite_UnionD: "finite (\<Union>A) \<Longrightarrow> finite A"
by (blast intro: finite_subset [OF subset_Pow_Union])
lemma finite_bind:
assumes "finite S"
assumes "\<forall>x \<in> S. finite (f x)"
shows "finite (Set.bind S f)"
using assms by (simp add: bind_UNION)
lemma finite_filter [simp]: "finite S \<Longrightarrow> finite (Set.filter P S)"
unfolding Set.filter_def by simp
lemma finite_set_of_finite_funs:
assumes "finite A" "finite B"
shows "finite {f. \<forall>x. (x \<in> A \<longrightarrow> f x \<in> B) \<and> (x \<notin> A \<longrightarrow> f x = d)}" (is "finite ?S")
proof -
let ?F = "\<lambda>f. {(a,b). a \<in> A \<and> b = f a}"
have "?F ` ?S \<subseteq> Pow(A \<times> B)"
by auto
from finite_subset[OF this] assms have 1: "finite (?F ` ?S)"
by simp
have 2: "inj_on ?F ?S"
by (fastforce simp add: inj_on_def set_eq_iff fun_eq_iff) (* somewhat slow *)
show ?thesis
by (rule finite_imageD [OF 1 2])
qed
lemma not_finite_existsD:
assumes "\<not> finite {a. P a}"
shows "\<exists>a. P a"
proof (rule classical)
assume "\<not> ?thesis"
with assms show ?thesis by auto
qed
subsection \<open>Further induction rules on finite sets\<close>
lemma finite_ne_induct [case_names singleton insert, consumes 2]:
assumes "finite F" and "F \<noteq> {}"
assumes "\<And>x. P {x}"
and "\<And>x F. finite F \<Longrightarrow> F \<noteq> {} \<Longrightarrow> x \<notin> F \<Longrightarrow> P F \<Longrightarrow> P (insert x F)"
shows "P F"
using assms
proof induct
case empty
then show ?case by simp
next
case (insert x F)
then show ?case by cases auto
qed
lemma finite_subset_induct [consumes 2, case_names empty insert]:
assumes "finite F" and "F \<subseteq> A"
and empty: "P {}"
and insert: "\<And>a F. finite F \<Longrightarrow> a \<in> A \<Longrightarrow> a \<notin> F \<Longrightarrow> P F \<Longrightarrow> P (insert a F)"
shows "P F"
using \<open>finite F\<close> \<open>F \<subseteq> A\<close>
proof induct
show "P {}" by fact
next
fix x F
assume "finite F" and "x \<notin> F" and P: "F \<subseteq> A \<Longrightarrow> P F" and i: "insert x F \<subseteq> A"
show "P (insert x F)"
proof (rule insert)
from i show "x \<in> A" by blast
from i have "F \<subseteq> A" by blast
with P show "P F" .
show "finite F" by fact
show "x \<notin> F" by fact
qed
qed
lemma finite_empty_induct:
assumes "finite A"
and "P A"
and remove: "\<And>a A. finite A \<Longrightarrow> a \<in> A \<Longrightarrow> P A \<Longrightarrow> P (A - {a})"
shows "P {}"
proof -
have "P (A - B)" if "B \<subseteq> A" for B :: "'a set"
proof -
from \<open>finite A\<close> that have "finite B"
by (rule rev_finite_subset)
from this \<open>B \<subseteq> A\<close> show "P (A - B)"
proof induct
case empty
from \<open>P A\<close> show ?case by simp
next
case (insert b B)
have "P (A - B - {b})"
proof (rule remove)
from \<open>finite A\<close> show "finite (A - B)"
by induct auto
from insert show "b \<in> A - B"
by simp
from insert show "P (A - B)"
by simp
qed
also have "A - B - {b} = A - insert b B"
by (rule Diff_insert [symmetric])
finally show ?case .
qed
qed
then have "P (A - A)" by blast
then show ?thesis by simp
qed
lemma finite_update_induct [consumes 1, case_names const update]:
assumes finite: "finite {a. f a \<noteq> c}"
and const: "P (\<lambda>a. c)"
and update: "\<And>a b f. finite {a. f a \<noteq> c} \<Longrightarrow> f a = c \<Longrightarrow> b \<noteq> c \<Longrightarrow> P f \<Longrightarrow> P (f(a := b))"
shows "P f"
using finite
proof (induct "{a. f a \<noteq> c}" arbitrary: f)
case empty
with const show ?case by simp
next
case (insert a A)
then have "A = {a'. (f(a := c)) a' \<noteq> c}" and "f a \<noteq> c"
by auto
with \<open>finite A\<close> have "finite {a'. (f(a := c)) a' \<noteq> c}"
by simp
have "(f(a := c)) a = c"
by simp
from insert \<open>A = {a'. (f(a := c)) a' \<noteq> c}\<close> have "P (f(a := c))"
by simp
with \<open>finite {a'. (f(a := c)) a' \<noteq> c}\<close> \<open>(f(a := c)) a = c\<close> \<open>f a \<noteq> c\<close>
have "P ((f(a := c))(a := f a))"
by (rule update)
then show ?case by simp
qed
lemma finite_subset_induct' [consumes 2, case_names empty insert]:
assumes "finite F" and "F \<subseteq> A"
and empty: "P {}"
and insert: "\<And>a F. \<lbrakk>finite F; a \<in> A; F \<subseteq> A; a \<notin> F; P F \<rbrakk> \<Longrightarrow> P (insert a F)"
shows "P F"
using assms(1,2)
proof induct
show "P {}" by fact
next
fix x F
assume "finite F" and "x \<notin> F" and
P: "F \<subseteq> A \<Longrightarrow> P F" and i: "insert x F \<subseteq> A"
show "P (insert x F)"
proof (rule insert)
from i show "x \<in> A" by blast
from i have "F \<subseteq> A" by blast
with P show "P F" .
show "finite F" by fact
show "x \<notin> F" by fact
show "F \<subseteq> A" by fact
qed
qed
subsection \<open>Class \<open>finite\<close>\<close>
class finite =
assumes finite_UNIV: "finite (UNIV :: 'a set)"
begin
lemma finite [simp]: "finite (A :: 'a set)"
by (rule subset_UNIV finite_UNIV finite_subset)+
lemma finite_code [code]: "finite (A :: 'a set) \<longleftrightarrow> True"
by simp
end
instance prod :: (finite, finite) finite
by standard (simp only: UNIV_Times_UNIV [symmetric] finite_cartesian_product finite)
lemma inj_graph: "inj (\<lambda>f. {(x, y). y = f x})"
by (rule inj_onI) (auto simp add: set_eq_iff fun_eq_iff)
instance "fun" :: (finite, finite) finite
proof
show "finite (UNIV :: ('a \<Rightarrow> 'b) set)"
proof (rule finite_imageD)
let ?graph = "\<lambda>f::'a \<Rightarrow> 'b. {(x, y). y = f x}"
have "range ?graph \<subseteq> Pow UNIV"
by simp
moreover have "finite (Pow (UNIV :: ('a * 'b) set))"
by (simp only: finite_Pow_iff finite)
ultimately show "finite (range ?graph)"
by (rule finite_subset)
show "inj ?graph"
by (rule inj_graph)
qed
qed
instance bool :: finite
by standard (simp add: UNIV_bool)
instance set :: (finite) finite
by standard (simp only: Pow_UNIV [symmetric] finite_Pow_iff finite)
instance unit :: finite
by standard (simp add: UNIV_unit)
instance sum :: (finite, finite) finite
by standard (simp only: UNIV_Plus_UNIV [symmetric] finite_Plus finite)
subsection \<open>A basic fold functional for finite sets\<close>
text \<open>The intended behaviour is
\<open>fold f z {x\<^sub>1, \<dots>, x\<^sub>n} = f x\<^sub>1 (\<dots> (f x\<^sub>n z)\<dots>)\<close>
if \<open>f\<close> is ``left-commutative'':
\<close>
locale comp_fun_commute =
fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'b"
assumes comp_fun_commute: "f y \<circ> f x = f x \<circ> f y"
begin
lemma fun_left_comm: "f y (f x z) = f x (f y z)"
using comp_fun_commute by (simp add: fun_eq_iff)
lemma commute_left_comp: "f y \<circ> (f x \<circ> g) = f x \<circ> (f y \<circ> g)"
by (simp add: o_assoc comp_fun_commute)
end
inductive fold_graph :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> bool"
for f :: "'a \<Rightarrow> 'b \<Rightarrow> 'b" and z :: 'b
where
emptyI [intro]: "fold_graph f z {} z"
| insertI [intro]: "x \<notin> A \<Longrightarrow> fold_graph f z A y \<Longrightarrow> fold_graph f z (insert x A) (f x y)"
inductive_cases empty_fold_graphE [elim!]: "fold_graph f z {} x"
lemma fold_graph_closed_lemma:
"fold_graph f z A x \<and> x \<in> B"
if "fold_graph g z A x"
"\<And>a b. a \<in> A \<Longrightarrow> b \<in> B \<Longrightarrow> f a b = g a b"
"\<And>a b. a \<in> A \<Longrightarrow> b \<in> B \<Longrightarrow> g a b \<in> B"
"z \<in> B"
using that(1-3)
proof (induction rule: fold_graph.induct)
case (insertI x A y)
have "fold_graph f z A y" "y \<in> B"
unfolding atomize_conj
by (rule insertI.IH) (auto intro: insertI.prems)
then have "g x y \<in> B" and f_eq: "f x y = g x y"
by (auto simp: insertI.prems)
moreover have "fold_graph f z (insert x A) (f x y)"
by (rule fold_graph.insertI; fact)
ultimately
show ?case
by (simp add: f_eq)
qed (auto intro!: that)
lemma fold_graph_closed_eq:
"fold_graph f z A = fold_graph g z A"
if "\<And>a b. a \<in> A \<Longrightarrow> b \<in> B \<Longrightarrow> f a b = g a b"
"\<And>a b. a \<in> A \<Longrightarrow> b \<in> B \<Longrightarrow> g a b \<in> B"
"z \<in> B"
using fold_graph_closed_lemma[of f z A _ B g] fold_graph_closed_lemma[of g z A _ B f] that
by auto
definition fold :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b"
where "fold f z A = (if finite A then (THE y. fold_graph f z A y) else z)"
lemma fold_closed_eq: "fold f z A = fold g z A"
if "\<And>a b. a \<in> A \<Longrightarrow> b \<in> B \<Longrightarrow> f a b = g a b"
"\<And>a b. a \<in> A \<Longrightarrow> b \<in> B \<Longrightarrow> g a b \<in> B"
"z \<in> B"
unfolding Finite_Set.fold_def
by (subst fold_graph_closed_eq[where B=B and g=g]) (auto simp: that)
text \<open>
A tempting alternative for the definiens is
\<^term>\<open>if finite A then THE y. fold_graph f z A y else e\<close>.
It allows the removal of finiteness assumptions from the theorems
\<open>fold_comm\<close>, \<open>fold_reindex\<close> and \<open>fold_distrib\<close>.
The proofs become ugly. It is not worth the effort. (???)
\<close>
lemma finite_imp_fold_graph: "finite A \<Longrightarrow> \<exists>x. fold_graph f z A x"
by (induct rule: finite_induct) auto
subsubsection \<open>From \<^const>\<open>fold_graph\<close> to \<^term>\<open>fold\<close>\<close>
context comp_fun_commute
begin
lemma fold_graph_finite:
assumes "fold_graph f z A y"
shows "finite A"
using assms by induct simp_all
lemma fold_graph_insertE_aux:
"fold_graph f z A y \<Longrightarrow> a \<in> A \<Longrightarrow> \<exists>y'. y = f a y' \<and> fold_graph f z (A - {a}) y'"
proof (induct set: fold_graph)
case emptyI
then show ?case by simp
next
case (insertI x A y)
show ?case
proof (cases "x = a")
case True
with insertI show ?thesis by auto
next
case False
then obtain y' where y: "y = f a y'" and y': "fold_graph f z (A - {a}) y'"
using insertI by auto
have "f x y = f a (f x y')"
unfolding y by (rule fun_left_comm)
moreover have "fold_graph f z (insert x A - {a}) (f x y')"
using y' and \<open>x \<noteq> a\<close> and \<open>x \<notin> A\<close>
by (simp add: insert_Diff_if fold_graph.insertI)
ultimately show ?thesis
by fast
qed
qed
lemma fold_graph_insertE:
assumes "fold_graph f z (insert x A) v" and "x \<notin> A"
obtains y where "v = f x y" and "fold_graph f z A y"
using assms by (auto dest: fold_graph_insertE_aux [OF _ insertI1])
lemma fold_graph_determ: "fold_graph f z A x \<Longrightarrow> fold_graph f z A y \<Longrightarrow> y = x"
proof (induct arbitrary: y set: fold_graph)
case emptyI
then show ?case by fast
next
case (insertI x A y v)
from \<open>fold_graph f z (insert x A) v\<close> and \<open>x \<notin> A\<close>
obtain y' where "v = f x y'" and "fold_graph f z A y'"
by (rule fold_graph_insertE)
from \<open>fold_graph f z A y'\<close> have "y' = y"
by (rule insertI)
with \<open>v = f x y'\<close> show "v = f x y"
by simp
qed
lemma fold_equality: "fold_graph f z A y \<Longrightarrow> fold f z A = y"
by (cases "finite A") (auto simp add: fold_def intro: fold_graph_determ dest: fold_graph_finite)
lemma fold_graph_fold:
assumes "finite A"
shows "fold_graph f z A (fold f z A)"
proof -
from assms have "\<exists>x. fold_graph f z A x"
by (rule finite_imp_fold_graph)
moreover note fold_graph_determ
ultimately have "\<exists>!x. fold_graph f z A x"
by (rule ex_ex1I)
then have "fold_graph f z A (The (fold_graph f z A))"
by (rule theI')
with assms show ?thesis
by (simp add: fold_def)
qed
text \<open>The base case for \<open>fold\<close>:\<close>
lemma (in -) fold_infinite [simp]: "\<not> finite A \<Longrightarrow> fold f z A = z"
by (auto simp: fold_def)
lemma (in -) fold_empty [simp]: "fold f z {} = z"
by (auto simp: fold_def)
text \<open>The various recursion equations for \<^const>\<open>fold\<close>:\<close>
lemma fold_insert [simp]:
assumes "finite A" and "x \<notin> A"
shows "fold f z (insert x A) = f x (fold f z A)"
proof (rule fold_equality)
fix z
from \<open>finite A\<close> have "fold_graph f z A (fold f z A)"
by (rule fold_graph_fold)
with \<open>x \<notin> A\<close> have "fold_graph f z (insert x A) (f x (fold f z A))"
by (rule fold_graph.insertI)
then show "fold_graph f z (insert x A) (f x (fold f z A))"
by simp
qed
declare (in -) empty_fold_graphE [rule del] fold_graph.intros [rule del]
\<comment> \<open>No more proofs involve these.\<close>
lemma fold_fun_left_comm: "finite A \<Longrightarrow> f x (fold f z A) = fold f (f x z) A"
proof (induct rule: finite_induct)
case empty
then show ?case by simp
next
case insert
then show ?case
by (simp add: fun_left_comm [of x])
qed
lemma fold_insert2: "finite A \<Longrightarrow> x \<notin> A \<Longrightarrow> fold f z (insert x A) = fold f (f x z) A"
by (simp add: fold_fun_left_comm)
lemma fold_rec:
assumes "finite A" and "x \<in> A"
shows "fold f z A = f x (fold f z (A - {x}))"
proof -
have A: "A = insert x (A - {x})"
using \<open>x \<in> A\<close> by blast
then have "fold f z A = fold f z (insert x (A - {x}))"
by simp
also have "\<dots> = f x (fold f z (A - {x}))"
by (rule fold_insert) (simp add: \<open>finite A\<close>)+
finally show ?thesis .
qed
lemma fold_insert_remove:
assumes "finite A"
shows "fold f z (insert x A) = f x (fold f z (A - {x}))"
proof -
from \<open>finite A\<close> have "finite (insert x A)"
by auto
moreover have "x \<in> insert x A"
by auto
ultimately have "fold f z (insert x A) = f x (fold f z (insert x A - {x}))"
by (rule fold_rec)
then show ?thesis
by simp
qed
lemma fold_set_union_disj:
assumes "finite A" "finite B" "A \<inter> B = {}"
shows "Finite_Set.fold f z (A \<union> B) = Finite_Set.fold f (Finite_Set.fold f z A) B"
using assms(2,1,3) by induct simp_all
end
text \<open>Other properties of \<^const>\<open>fold\<close>:\<close>
lemma fold_image:
assumes "inj_on g A"
shows "fold f z (g ` A) = fold (f \<circ> g) z A"
proof (cases "finite A")
case False
with assms show ?thesis
by (auto dest: finite_imageD simp add: fold_def)
next
case True
have "fold_graph f z (g ` A) = fold_graph (f \<circ> g) z A"
proof
fix w
show "fold_graph f z (g ` A) w \<longleftrightarrow> fold_graph (f \<circ> g) z A w" (is "?P \<longleftrightarrow> ?Q")
proof
assume ?P
then show ?Q
using assms
proof (induct "g ` A" w arbitrary: A)
case emptyI
then show ?case by (auto intro: fold_graph.emptyI)
next
case (insertI x A r B)
from \<open>inj_on g B\<close> \<open>x \<notin> A\<close> \<open>insert x A = image g B\<close> obtain x' A'
where "x' \<notin> A'" and [simp]: "B = insert x' A'" "x = g x'" "A = g ` A'"
by (rule inj_img_insertE)
from insertI.prems have "fold_graph (f \<circ> g) z A' r"
by (auto intro: insertI.hyps)
with \<open>x' \<notin> A'\<close> have "fold_graph (f \<circ> g) z (insert x' A') ((f \<circ> g) x' r)"
by (rule fold_graph.insertI)
then show ?case
by simp
qed
next
assume ?Q
then show ?P
using assms
proof induct
case emptyI
then show ?case
by (auto intro: fold_graph.emptyI)
next
case (insertI x A r)
from \<open>x \<notin> A\<close> insertI.prems have "g x \<notin> g ` A"
by auto
moreover from insertI have "fold_graph f z (g ` A) r"
by simp
ultimately have "fold_graph f z (insert (g x) (g ` A)) (f (g x) r)"
by (rule fold_graph.insertI)
then show ?case
by simp
qed
qed
qed
with True assms show ?thesis
by (auto simp add: fold_def)
qed
lemma fold_cong:
assumes "comp_fun_commute f" "comp_fun_commute g"
and "finite A"
and cong: "\<And>x. x \<in> A \<Longrightarrow> f x = g x"
and "s = t" and "A = B"
shows "fold f s A = fold g t B"
proof -
have "fold f s A = fold g s A"
using \<open>finite A\<close> cong
proof (induct A)
case empty
then show ?case by simp
next
case insert
interpret f: comp_fun_commute f by (fact \<open>comp_fun_commute f\<close>)
interpret g: comp_fun_commute g by (fact \<open>comp_fun_commute g\<close>)
from insert show ?case by simp
qed
with assms show ?thesis by simp
qed
text \<open>A simplified version for idempotent functions:\<close>
locale comp_fun_idem = comp_fun_commute +
assumes comp_fun_idem: "f x \<circ> f x = f x"
begin
lemma fun_left_idem: "f x (f x z) = f x z"
using comp_fun_idem by (simp add: fun_eq_iff)
lemma fold_insert_idem:
assumes fin: "finite A"
shows "fold f z (insert x A) = f x (fold f z A)"
proof cases
assume "x \<in> A"
then obtain B where "A = insert x B" and "x \<notin> B"
by (rule set_insert)
then show ?thesis
using assms by (simp add: comp_fun_idem fun_left_idem)
next
assume "x \<notin> A"
then show ?thesis
using assms by simp
qed
declare fold_insert [simp del] fold_insert_idem [simp]
lemma fold_insert_idem2: "finite A \<Longrightarrow> fold f z (insert x A) = fold f (f x z) A"
by (simp add: fold_fun_left_comm)
end
subsubsection \<open>Liftings to \<open>comp_fun_commute\<close> etc.\<close>
lemma (in comp_fun_commute) comp_comp_fun_commute: "comp_fun_commute (f \<circ> g)"
by standard (simp_all add: comp_fun_commute)
lemma (in comp_fun_idem) comp_comp_fun_idem: "comp_fun_idem (f \<circ> g)"
by (rule comp_fun_idem.intro, rule comp_comp_fun_commute, unfold_locales)
(simp_all add: comp_fun_idem)
lemma (in comp_fun_commute) comp_fun_commute_funpow: "comp_fun_commute (\<lambda>x. f x ^^ g x)"
proof
show "f y ^^ g y \<circ> f x ^^ g x = f x ^^ g x \<circ> f y ^^ g y" for x y
proof (cases "x = y")
case True
then show ?thesis by simp
next
case False
show ?thesis
proof (induct "g x" arbitrary: g)
case 0
then show ?case by simp
next
case (Suc n g)
have hyp1: "f y ^^ g y \<circ> f x = f x \<circ> f y ^^ g y"
proof (induct "g y" arbitrary: g)
case 0
then show ?case by simp
next
case (Suc n g)
define h where "h z = g z - 1" for z
with Suc have "n = h y"
by simp
with Suc have hyp: "f y ^^ h y \<circ> f x = f x \<circ> f y ^^ h y"
by auto
from Suc h_def have "g y = Suc (h y)"
by simp
then show ?case
by (simp add: comp_assoc hyp) (simp add: o_assoc comp_fun_commute)
qed
define h where "h z = (if z = x then g x - 1 else g z)" for z
with Suc have "n = h x"
by simp
with Suc have "f y ^^ h y \<circ> f x ^^ h x = f x ^^ h x \<circ> f y ^^ h y"
by auto
with False h_def have hyp2: "f y ^^ g y \<circ> f x ^^ h x = f x ^^ h x \<circ> f y ^^ g y"
by simp
from Suc h_def have "g x = Suc (h x)"
by simp
then show ?case
by (simp del: funpow.simps add: funpow_Suc_right o_assoc hyp2) (simp add: comp_assoc hyp1)
qed
qed
qed
subsubsection \<open>Expressing set operations via \<^const>\<open>fold\<close>\<close>
lemma comp_fun_commute_const: "comp_fun_commute (\<lambda>_. f)"
by standard rule
lemma comp_fun_idem_insert: "comp_fun_idem insert"
by standard auto
lemma comp_fun_idem_remove: "comp_fun_idem Set.remove"
by standard auto
lemma (in semilattice_inf) comp_fun_idem_inf: "comp_fun_idem inf"
by standard (auto simp add: inf_left_commute)
lemma (in semilattice_sup) comp_fun_idem_sup: "comp_fun_idem sup"
by standard (auto simp add: sup_left_commute)
lemma union_fold_insert:
assumes "finite A"
shows "A \<union> B = fold insert B A"
proof -
interpret comp_fun_idem insert
by (fact comp_fun_idem_insert)
from \<open>finite A\<close> show ?thesis
by (induct A arbitrary: B) simp_all
qed
lemma minus_fold_remove:
assumes "finite A"
shows "B - A = fold Set.remove B A"
proof -
interpret comp_fun_idem Set.remove
by (fact comp_fun_idem_remove)
from \<open>finite A\<close> have "fold Set.remove B A = B - A"
by (induct A arbitrary: B) auto (* slow *)
then show ?thesis ..
qed
lemma comp_fun_commute_filter_fold:
"comp_fun_commute (\<lambda>x A'. if P x then Set.insert x A' else A')"
proof -
interpret comp_fun_idem Set.insert by (fact comp_fun_idem_insert)
show ?thesis by standard (auto simp: fun_eq_iff)
qed
lemma Set_filter_fold:
assumes "finite A"
shows "Set.filter P A = fold (\<lambda>x A'. if P x then Set.insert x A' else A') {} A"
using assms
by induct
(auto simp add: Set.filter_def comp_fun_commute.fold_insert[OF comp_fun_commute_filter_fold])
lemma inter_Set_filter:
assumes "finite B"
shows "A \<inter> B = Set.filter (\<lambda>x. x \<in> A) B"
using assms
by induct (auto simp: Set.filter_def)
lemma image_fold_insert:
assumes "finite A"
shows "image f A = fold (\<lambda>k A. Set.insert (f k) A) {} A"
proof -
interpret comp_fun_commute "\<lambda>k A. Set.insert (f k) A"
by standard auto
show ?thesis
using assms by (induct A) auto
qed
lemma Ball_fold:
assumes "finite A"
shows "Ball A P = fold (\<lambda>k s. s \<and> P k) True A"
proof -
interpret comp_fun_commute "\<lambda>k s. s \<and> P k"
by standard auto
show ?thesis
using assms by (induct A) auto
qed
lemma Bex_fold:
assumes "finite A"
shows "Bex A P = fold (\<lambda>k s. s \<or> P k) False A"
proof -
interpret comp_fun_commute "\<lambda>k s. s \<or> P k"
by standard auto
show ?thesis
using assms by (induct A) auto
qed
lemma comp_fun_commute_Pow_fold: "comp_fun_commute (\<lambda>x A. A \<union> Set.insert x ` A)"
by (clarsimp simp: fun_eq_iff comp_fun_commute_def) blast (* somewhat slow *)
lemma Pow_fold:
assumes "finite A"
shows "Pow A = fold (\<lambda>x A. A \<union> Set.insert x ` A) {{}} A"
proof -
interpret comp_fun_commute "\<lambda>x A. A \<union> Set.insert x ` A"
by (rule comp_fun_commute_Pow_fold)
show ?thesis
using assms by (induct A) (auto simp: Pow_insert)
qed
lemma fold_union_pair:
assumes "finite B"
shows "(\<Union>y\<in>B. {(x, y)}) \<union> A = fold (\<lambda>y. Set.insert (x, y)) A B"
proof -
interpret comp_fun_commute "\<lambda>y. Set.insert (x, y)"
by standard auto
show ?thesis
using assms by (induct arbitrary: A) simp_all
qed
lemma comp_fun_commute_product_fold:
"finite B \<Longrightarrow> comp_fun_commute (\<lambda>x z. fold (\<lambda>y. Set.insert (x, y)) z B)"
by standard (auto simp: fold_union_pair [symmetric])
lemma product_fold:
assumes "finite A" "finite B"
shows "A \<times> B = fold (\<lambda>x z. fold (\<lambda>y. Set.insert (x, y)) z B) {} A"
using assms unfolding Sigma_def
by (induct A)
(simp_all add: comp_fun_commute.fold_insert[OF comp_fun_commute_product_fold] fold_union_pair)
context complete_lattice
begin
lemma inf_Inf_fold_inf:
assumes "finite A"
shows "inf (Inf A) B = fold inf B A"
proof -
interpret comp_fun_idem inf
by (fact comp_fun_idem_inf)
from \<open>finite A\<close> fold_fun_left_comm show ?thesis
by (induct A arbitrary: B) (simp_all add: inf_commute fun_eq_iff)
qed
lemma sup_Sup_fold_sup:
assumes "finite A"
shows "sup (Sup A) B = fold sup B A"
proof -
interpret comp_fun_idem sup
by (fact comp_fun_idem_sup)
from \<open>finite A\<close> fold_fun_left_comm show ?thesis
by (induct A arbitrary: B) (simp_all add: sup_commute fun_eq_iff)
qed
lemma Inf_fold_inf: "finite A \<Longrightarrow> Inf A = fold inf top A"
using inf_Inf_fold_inf [of A top] by (simp add: inf_absorb2)
lemma Sup_fold_sup: "finite A \<Longrightarrow> Sup A = fold sup bot A"
using sup_Sup_fold_sup [of A bot] by (simp add: sup_absorb2)
lemma inf_INF_fold_inf:
assumes "finite A"
shows "inf B (\<Sqinter>(f ` A)) = fold (inf \<circ> f) B A" (is "?inf = ?fold")
proof -
interpret comp_fun_idem inf by (fact comp_fun_idem_inf)
interpret comp_fun_idem "inf \<circ> f" by (fact comp_comp_fun_idem)
from \<open>finite A\<close> have "?fold = ?inf"
by (induct A arbitrary: B) (simp_all add: inf_left_commute)
then show ?thesis ..
qed
lemma sup_SUP_fold_sup:
assumes "finite A"
shows "sup B (\<Squnion>(f ` A)) = fold (sup \<circ> f) B A" (is "?sup = ?fold")
proof -
interpret comp_fun_idem sup by (fact comp_fun_idem_sup)
interpret comp_fun_idem "sup \<circ> f" by (fact comp_comp_fun_idem)
from \<open>finite A\<close> have "?fold = ?sup"
by (induct A arbitrary: B) (simp_all add: sup_left_commute)
then show ?thesis ..
qed
lemma INF_fold_inf: "finite A \<Longrightarrow> \<Sqinter>(f ` A) = fold (inf \<circ> f) top A"
using inf_INF_fold_inf [of A top] by simp
lemma SUP_fold_sup: "finite A \<Longrightarrow> \<Squnion>(f ` A) = fold (sup \<circ> f) bot A"
using sup_SUP_fold_sup [of A bot] by simp
lemma finite_Inf_in:
assumes "finite A" "A\<noteq>{}" and inf: "\<And>x y. \<lbrakk>x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow> inf x y \<in> A"
shows "Inf A \<in> A"
proof -
have "Inf B \<in> A" if "B \<le> A" "B\<noteq>{}" for B
using finite_subset [OF \<open>B \<subseteq> A\<close> \<open>finite A\<close>] that
by (induction B) (use inf in \<open>force+\<close>)
then show ?thesis
by (simp add: assms)
qed
lemma finite_Sup_in:
assumes "finite A" "A\<noteq>{}" and sup: "\<And>x y. \<lbrakk>x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow> sup x y \<in> A"
shows "Sup A \<in> A"
proof -
have "Sup B \<in> A" if "B \<le> A" "B\<noteq>{}" for B
using finite_subset [OF \<open>B \<subseteq> A\<close> \<open>finite A\<close>] that
by (induction B) (use sup in \<open>force+\<close>)
then show ?thesis
by (simp add: assms)
qed
end
subsection \<open>Locales as mini-packages for fold operations\<close>
subsubsection \<open>The natural case\<close>
locale folding =
fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'b" and z :: "'b"
assumes comp_fun_commute: "f y \<circ> f x = f x \<circ> f y"
begin
interpretation fold?: comp_fun_commute f
by standard (use comp_fun_commute in \<open>simp add: fun_eq_iff\<close>)
definition F :: "'a set \<Rightarrow> 'b"
where eq_fold: "F A = fold f z A"
lemma empty [simp]:"F {} = z"
by (simp add: eq_fold)
lemma infinite [simp]: "\<not> finite A \<Longrightarrow> F A = z"
by (simp add: eq_fold)
lemma insert [simp]:
assumes "finite A" and "x \<notin> A"
shows "F (insert x A) = f x (F A)"
proof -
from fold_insert assms
have "fold f z (insert x A) = f x (fold f z A)" by simp
with \<open>finite A\<close> show ?thesis by (simp add: eq_fold fun_eq_iff)
qed
lemma remove:
assumes "finite A" and "x \<in> A"
shows "F A = f x (F (A - {x}))"
proof -
from \<open>x \<in> A\<close> obtain B where A: "A = insert x B" and "x \<notin> B"
by (auto dest: mk_disjoint_insert)
moreover from \<open>finite A\<close> A have "finite B" by simp
ultimately show ?thesis by simp
qed
lemma insert_remove: "finite A \<Longrightarrow> F (insert x A) = f x (F (A - {x}))"
by (cases "x \<in> A") (simp_all add: remove insert_absorb)
end
subsubsection \<open>With idempotency\<close>
locale folding_idem = folding +
assumes comp_fun_idem: "f x \<circ> f x = f x"
begin
declare insert [simp del]
interpretation fold?: comp_fun_idem f
by standard (insert comp_fun_commute comp_fun_idem, simp add: fun_eq_iff)
lemma insert_idem [simp]:
assumes "finite A"
shows "F (insert x A) = f x (F A)"
proof -
from fold_insert_idem assms
have "fold f z (insert x A) = f x (fold f z A)" by simp
with \<open>finite A\<close> show ?thesis by (simp add: eq_fold fun_eq_iff)
qed
end
subsection \<open>Finite cardinality\<close>
text \<open>
The traditional definition
\<^prop>\<open>card A \<equiv> LEAST n. \<exists>f. A = {f i |i. i < n}\<close>
is ugly to work with.
But now that we have \<^const>\<open>fold\<close> things are easy:
\<close>
global_interpretation card: folding "\<lambda>_. Suc" 0
defines card = "folding.F (\<lambda>_. Suc) 0"
by standard rule
lemma card_insert_disjoint: "finite A \<Longrightarrow> x \<notin> A \<Longrightarrow> card (insert x A) = Suc (card A)"
by (fact card.insert)
lemma card_insert_if: "finite A \<Longrightarrow> card (insert x A) = (if x \<in> A then card A else Suc (card A))"
by auto (simp add: card.insert_remove card.remove)
lemma card_ge_0_finite: "card A > 0 \<Longrightarrow> finite A"
by (rule ccontr) simp
lemma card_0_eq [simp]: "finite A \<Longrightarrow> card A = 0 \<longleftrightarrow> A = {}"
by (auto dest: mk_disjoint_insert)
lemma finite_UNIV_card_ge_0: "finite (UNIV :: 'a set) \<Longrightarrow> card (UNIV :: 'a set) > 0"
by (rule ccontr) simp
lemma card_eq_0_iff: "card A = 0 \<longleftrightarrow> A = {} \<or> \<not> finite A"
by auto
lemma card_range_greater_zero: "finite (range f) \<Longrightarrow> card (range f) > 0"
by (rule ccontr) (simp add: card_eq_0_iff)
lemma card_gt_0_iff: "0 < card A \<longleftrightarrow> A \<noteq> {} \<and> finite A"
by (simp add: neq0_conv [symmetric] card_eq_0_iff)
lemma card_Suc_Diff1:
assumes "finite A" "x \<in> A" shows "Suc (card (A - {x})) = card A"
proof -
have "Suc (card (A - {x})) = card (insert x (A - {x}))"
using assms by (simp add: card.insert_remove)
also have "... = card A"
using assms by (simp add: card_insert_if)
finally show ?thesis .
qed
lemma card_insert_le_m1:
assumes "n > 0" "card y \<le> n - 1" shows "card (insert x y) \<le> n"
using assms
by (cases "finite y") (auto simp: card_insert_if)
lemma card_Diff_singleton: "finite A \<Longrightarrow> x \<in> A \<Longrightarrow> card (A - {x}) = card A - 1"
by (simp add: card_Suc_Diff1 [symmetric])
lemma card_Diff_singleton_if:
"finite A \<Longrightarrow> card (A - {x}) = (if x \<in> A then card A - 1 else card A)"
by (simp add: card_Diff_singleton)
lemma card_Diff_insert[simp]:
assumes "finite A" and "a \<in> A" and "a \<notin> B"
shows "card (A - insert a B) = card (A - B) - 1"
proof -
have "A - insert a B = (A - B) - {a}"
using assms by blast
then show ?thesis
using assms by (simp add: card_Diff_singleton)
qed
lemma card_insert_le: "finite A \<Longrightarrow> card A \<le> card (insert x A)"
by (simp add: card_insert_if)
lemma card_Collect_less_nat[simp]: "card {i::nat. i < n} = n"
by (induct n) (simp_all add:less_Suc_eq Collect_disj_eq)
lemma card_Collect_le_nat[simp]: "card {i::nat. i \<le> n} = Suc n"
using card_Collect_less_nat[of "Suc n"] by (simp add: less_Suc_eq_le)
lemma card_mono:
assumes "finite B" and "A \<subseteq> B"
shows "card A \<le> card B"
proof -
from assms have "finite A"
by (auto intro: finite_subset)
then show ?thesis
using assms
proof (induct A arbitrary: B)
case empty
then show ?case by simp
next
case (insert x A)
then have "x \<in> B"
by simp
from insert have "A \<subseteq> B - {x}" and "finite (B - {x})"
by auto
with insert.hyps have "card A \<le> card (B - {x})"
by auto
with \<open>finite A\<close> \<open>x \<notin> A\<close> \<open>finite B\<close> \<open>x \<in> B\<close> show ?case
by simp (simp only: card.remove)
qed
qed
lemma card_seteq:
assumes "finite B" and A: "A \<subseteq> B" "card B \<le> card A"
shows "A = B"
using assms
proof (induction arbitrary: A rule: finite_induct)
case (insert b B)
then have A: "finite A" "A - {b} \<subseteq> B"
by force+
then have "card B \<le> card (A - {b})"
using insert by (auto simp add: card_Diff_singleton_if)
then have "A - {b} = B"
using A insert.IH by auto
then show ?case
using insert.hyps insert.prems by auto
qed auto
lemma psubset_card_mono: "finite B \<Longrightarrow> A < B \<Longrightarrow> card A < card B"
using card_seteq [of B A] by (auto simp add: psubset_eq)
lemma card_Un_Int:
assumes "finite A" "finite B"
shows "card A + card B = card (A \<union> B) + card (A \<inter> B)"
using assms
proof (induct A)
case empty
then show ?case by simp
next
case insert
then show ?case
by (auto simp add: insert_absorb Int_insert_left)
qed
lemma card_Un_disjoint: "finite A \<Longrightarrow> finite B \<Longrightarrow> A \<inter> B = {} \<Longrightarrow> card (A \<union> B) = card A + card B"
using card_Un_Int [of A B] by simp
lemma card_Un_disjnt: "\<lbrakk>finite A; finite B; disjnt A B\<rbrakk> \<Longrightarrow> card (A \<union> B) = card A + card B"
by (simp add: card_Un_disjoint disjnt_def)
lemma card_Un_le: "card (A \<union> B) \<le> card A + card B"
proof (cases "finite A \<and> finite B")
case True
then show ?thesis
using le_iff_add card_Un_Int [of A B] by auto
qed auto
lemma card_Diff_subset:
assumes "finite B"
and "B \<subseteq> A"
shows "card (A - B) = card A - card B"
using assms
proof (cases "finite A")
case False
with assms show ?thesis
by simp
next
case True
with assms show ?thesis
by (induct B arbitrary: A) simp_all
qed
lemma card_Diff_subset_Int:
assumes "finite (A \<inter> B)"
shows "card (A - B) = card A - card (A \<inter> B)"
proof -
have "A - B = A - A \<inter> B" by auto
with assms show ?thesis
by (simp add: card_Diff_subset)
qed
lemma diff_card_le_card_Diff:
assumes "finite B"
shows "card A - card B \<le> card (A - B)"
proof -
have "card A - card B \<le> card A - card (A \<inter> B)"
using card_mono[OF assms Int_lower2, of A] by arith
also have "\<dots> = card (A - B)"
using assms by (simp add: card_Diff_subset_Int)
finally show ?thesis .
qed
lemma card_le_sym_Diff:
assumes "finite A" "finite B" "card A \<le> card B"
shows "card(A - B) \<le> card(B - A)"
proof -
have "card(A - B) = card A - card (A \<inter> B)" using assms(1,2) by(simp add: card_Diff_subset_Int)
also have "\<dots> \<le> card B - card (A \<inter> B)" using assms(3) by linarith
also have "\<dots> = card(B - A)" using assms(1,2) by(simp add: card_Diff_subset_Int Int_commute)
finally show ?thesis .
qed
lemma card_less_sym_Diff:
assumes "finite A" "finite B" "card A < card B"
shows "card(A - B) < card(B - A)"
proof -
have "card(A - B) = card A - card (A \<inter> B)" using assms(1,2) by(simp add: card_Diff_subset_Int)
also have "\<dots> < card B - card (A \<inter> B)" using assms(1,3) by (simp add: card_mono diff_less_mono)
also have "\<dots> = card(B - A)" using assms(1,2) by(simp add: card_Diff_subset_Int Int_commute)
finally show ?thesis .
qed
lemma card_Diff1_less_iff: "card (A - {x}) < card A \<longleftrightarrow> finite A \<and> x \<in> A"
proof (cases "finite A \<and> x \<in> A")
case True
then show ?thesis
by (auto simp: card_gt_0_iff intro: diff_less)
qed auto
lemma card_Diff1_less: "finite A \<Longrightarrow> x \<in> A \<Longrightarrow> card (A - {x}) < card A"
unfolding card_Diff1_less_iff by auto
lemma card_Diff2_less:
assumes "finite A" "x \<in> A" "y \<in> A" shows "card (A - {x} - {y}) < card A"
proof (cases "x = y")
case True
with assms show ?thesis
by (simp add: card_Diff1_less del: card_Diff_insert)
next
case False
then have "card (A - {x} - {y}) < card (A - {x})" "card (A - {x}) < card A"
using assms by (intro card_Diff1_less; simp)+
then show ?thesis
by (blast intro: less_trans)
qed
lemma card_Diff1_le: "finite A \<Longrightarrow> card (A - {x}) \<le> card A"
by (cases "x \<in> A") (simp_all add: card_Diff1_less less_imp_le)
lemma card_psubset: "finite B \<Longrightarrow> A \<subseteq> B \<Longrightarrow> card A < card B \<Longrightarrow> A < B"
by (erule psubsetI) blast
lemma card_le_inj:
assumes fA: "finite A"
and fB: "finite B"
and c: "card A \<le> card B"
shows "\<exists>f. f ` A \<subseteq> B \<and> inj_on f A"
using fA fB c
proof (induct arbitrary: B rule: finite_induct)
case empty
then show ?case by simp
next
case (insert x s t)
then show ?case
proof (induct rule: finite_induct [OF insert.prems(1)])
case 1
then show ?case by simp
next
case (2 y t)
from "2.prems"(1,2,5) "2.hyps"(1,2) have cst: "card s \<le> card t"
by simp
from "2.prems"(3) [OF "2.hyps"(1) cst]
obtain f where "f ` s \<subseteq> t" "inj_on f s"
by blast
with "2.prems"(2) "2.hyps"(2) show ?case
unfolding inj_on_def
by (rule_tac x = "\<lambda>z. if z = x then y else f z" in exI) auto
qed
qed
lemma card_subset_eq:
assumes fB: "finite B"
and AB: "A \<subseteq> B"
and c: "card A = card B"
shows "A = B"
proof -
from fB AB have fA: "finite A"
by (auto intro: finite_subset)
from fA fB have fBA: "finite (B - A)"
by auto
have e: "A \<inter> (B - A) = {}"
by blast
have eq: "A \<union> (B - A) = B"
using AB by blast
from card_Un_disjoint[OF fA fBA e, unfolded eq c] have "card (B - A) = 0"
by arith
then have "B - A = {}"
unfolding card_eq_0_iff using fA fB by simp
with AB show "A = B"
by blast
qed
lemma insert_partition:
"x \<notin> F \<Longrightarrow> \<forall>c1 \<in> insert x F. \<forall>c2 \<in> insert x F. c1 \<noteq> c2 \<longrightarrow> c1 \<inter> c2 = {} \<Longrightarrow> x \<inter> \<Union>F = {}"
by auto (* somewhat slow *)
lemma finite_psubset_induct [consumes 1, case_names psubset]:
assumes finite: "finite A"
and major: "\<And>A. finite A \<Longrightarrow> (\<And>B. B \<subset> A \<Longrightarrow> P B) \<Longrightarrow> P A"
shows "P A"
using finite
proof (induct A taking: card rule: measure_induct_rule)
case (less A)
have fin: "finite A" by fact
have ih: "card B < card A \<Longrightarrow> finite B \<Longrightarrow> P B" for B by fact
have "P B" if "B \<subset> A" for B
proof -
from that have "card B < card A"
using psubset_card_mono fin by blast
moreover
from that have "B \<subseteq> A"
by auto
then have "finite B"
using fin finite_subset by blast
ultimately show ?thesis using ih by simp
qed
with fin show "P A" using major by blast
qed
lemma finite_induct_select [consumes 1, case_names empty select]:
assumes "finite S"
and "P {}"
and select: "\<And>T. T \<subset> S \<Longrightarrow> P T \<Longrightarrow> \<exists>s\<in>S - T. P (insert s T)"
shows "P S"
proof -
have "0 \<le> card S" by simp
then have "\<exists>T \<subseteq> S. card T = card S \<and> P T"
proof (induct rule: dec_induct)
case base with \<open>P {}\<close>
show ?case
by (intro exI[of _ "{}"]) auto
next
case (step n)
then obtain T where T: "T \<subseteq> S" "card T = n" "P T"
by auto
with \<open>n < card S\<close> have "T \<subset> S" "P T"
by auto
with select[of T] obtain s where "s \<in> S" "s \<notin> T" "P (insert s T)"
by auto
with step(2) T \<open>finite S\<close> show ?case
by (intro exI[of _ "insert s T"]) (auto dest: finite_subset)
qed
with \<open>finite S\<close> show "P S"
by (auto dest: card_subset_eq)
qed
lemma remove_induct [case_names empty infinite remove]:
assumes empty: "P ({} :: 'a set)"
and infinite: "\<not> finite B \<Longrightarrow> P B"
and remove: "\<And>A. finite A \<Longrightarrow> A \<noteq> {} \<Longrightarrow> A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> P (A - {x})) \<Longrightarrow> P A"
shows "P B"
proof (cases "finite B")
case False
then show ?thesis by (rule infinite)
next
case True
define A where "A = B"
with True have "finite A" "A \<subseteq> B"
by simp_all
then show "P A"
proof (induct "card A" arbitrary: A)
case 0
then have "A = {}" by auto
with empty show ?case by simp
next
case (Suc n A)
from \<open>A \<subseteq> B\<close> and \<open>finite B\<close> have "finite A"
by (rule finite_subset)
moreover from Suc.hyps have "A \<noteq> {}" by auto
moreover note \<open>A \<subseteq> B\<close>
moreover have "P (A - {x})" if x: "x \<in> A" for x
using x Suc.prems \<open>Suc n = card A\<close> by (intro Suc) auto
ultimately show ?case by (rule remove)
qed
qed
lemma finite_remove_induct [consumes 1, case_names empty remove]:
fixes P :: "'a set \<Rightarrow> bool"
assumes "finite B"
and "P {}"
and "\<And>A. finite A \<Longrightarrow> A \<noteq> {} \<Longrightarrow> A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> P (A - {x})) \<Longrightarrow> P A"
defines "B' \<equiv> B"
shows "P B'"
by (induct B' rule: remove_induct) (simp_all add: assms)
text \<open>Main cardinality theorem.\<close>
lemma card_partition [rule_format]:
"finite C \<Longrightarrow> finite (\<Union>C) \<Longrightarrow> (\<forall>c\<in>C. card c = k) \<Longrightarrow>
(\<forall>c1 \<in> C. \<forall>c2 \<in> C. c1 \<noteq> c2 \<longrightarrow> c1 \<inter> c2 = {}) \<Longrightarrow>
k * card C = card (\<Union>C)"
proof (induct rule: finite_induct)
case empty
then show ?case by simp
next
case (insert x F)
then show ?case
by (simp add: card_Un_disjoint insert_partition finite_subset [of _ "\<Union>(insert _ _)"])
qed
lemma card_eq_UNIV_imp_eq_UNIV:
assumes fin: "finite (UNIV :: 'a set)"
and card: "card A = card (UNIV :: 'a set)"
shows "A = (UNIV :: 'a set)"
proof
show "A \<subseteq> UNIV" by simp
show "UNIV \<subseteq> A"
proof
show "x \<in> A" for x
proof (rule ccontr)
assume "x \<notin> A"
then have "A \<subset> UNIV" by auto
with fin have "card A < card (UNIV :: 'a set)"
by (fact psubset_card_mono)
with card show False by simp
qed
qed
qed
text \<open>The form of a finite set of given cardinality\<close>
lemma card_eq_SucD:
assumes "card A = Suc k"
shows "\<exists>b B. A = insert b B \<and> b \<notin> B \<and> card B = k \<and> (k = 0 \<longrightarrow> B = {})"
proof -
have fin: "finite A"
using assms by (auto intro: ccontr)
moreover have "card A \<noteq> 0"
using assms by auto
ultimately obtain b where b: "b \<in> A"
by auto
show ?thesis
proof (intro exI conjI)
show "A = insert b (A - {b})"
using b by blast
show "b \<notin> A - {b}"
by blast
show "card (A - {b}) = k" and "k = 0 \<longrightarrow> A - {b} = {}"
using assms b fin by (fastforce dest: mk_disjoint_insert)+
qed
qed
lemma card_Suc_eq:
"card A = Suc k \<longleftrightarrow>
(\<exists>b B. A = insert b B \<and> b \<notin> B \<and> card B = k \<and> (k = 0 \<longrightarrow> B = {}))"
by (auto simp: card_insert_if card_gt_0_iff elim!: card_eq_SucD)
lemma card_Suc_eq_finite:
"card A = Suc k \<longleftrightarrow> (\<exists>b B. A = insert b B \<and> b \<notin> B \<and> card B = k \<and> finite B)"
unfolding card_Suc_eq using card_gt_0_iff by fastforce
lemma card_1_singletonE:
assumes "card A = 1"
obtains x where "A = {x}"
using assms by (auto simp: card_Suc_eq)
lemma is_singleton_altdef: "is_singleton A \<longleftrightarrow> card A = 1"
unfolding is_singleton_def
by (auto elim!: card_1_singletonE is_singletonE simp del: One_nat_def)
lemma card_1_singleton_iff: "card A = Suc 0 \<longleftrightarrow> (\<exists>x. A = {x})"
by (simp add: card_Suc_eq)
lemma card_le_Suc0_iff_eq:
assumes "finite A"
shows "card A \<le> Suc 0 \<longleftrightarrow> (\<forall>a1 \<in> A. \<forall>a2 \<in> A. a1 = a2)" (is "?C = ?A")
proof
assume ?C thus ?A using assms by (auto simp: le_Suc_eq dest: card_eq_SucD)
next
assume ?A
show ?C
proof cases
assume "A = {}" thus ?C using \<open>?A\<close> by simp
next
assume "A \<noteq> {}"
then obtain a where "A = {a}" using \<open>?A\<close> by blast
thus ?C by simp
qed
qed
lemma card_le_Suc_iff:
"Suc n \<le> card A = (\<exists>a B. A = insert a B \<and> a \<notin> B \<and> n \<le> card B \<and> finite B)"
proof (cases "finite A")
case True
then show ?thesis
by (fastforce simp: card_Suc_eq less_eq_nat.simps split: nat.splits)
qed auto
lemma finite_fun_UNIVD2:
assumes fin: "finite (UNIV :: ('a \<Rightarrow> 'b) set)"
shows "finite (UNIV :: 'b set)"
proof -
from fin have "finite (range (\<lambda>f :: 'a \<Rightarrow> 'b. f arbitrary))" for arbitrary
by (rule finite_imageI)
moreover have "UNIV = range (\<lambda>f :: 'a \<Rightarrow> 'b. f arbitrary)" for arbitrary
by (rule UNIV_eq_I) auto
ultimately show "finite (UNIV :: 'b set)"
by simp
qed
lemma card_UNIV_unit [simp]: "card (UNIV :: unit set) = 1"
unfolding UNIV_unit by simp
lemma infinite_arbitrarily_large:
assumes "\<not> finite A"
shows "\<exists>B. finite B \<and> card B = n \<and> B \<subseteq> A"
proof (induction n)
case 0
show ?case by (intro exI[of _ "{}"]) auto
next
case (Suc n)
then obtain B where B: "finite B \<and> card B = n \<and> B \<subseteq> A" ..
with \<open>\<not> finite A\<close> have "A \<noteq> B" by auto
with B have "B \<subset> A" by auto
then have "\<exists>x. x \<in> A - B"
by (elim psubset_imp_ex_mem)
then obtain x where x: "x \<in> A - B" ..
with B have "finite (insert x B) \<and> card (insert x B) = Suc n \<and> insert x B \<subseteq> A"
by auto
then show "\<exists>B. finite B \<and> card B = Suc n \<and> B \<subseteq> A" ..
qed
text \<open>Sometimes, to prove that a set is finite, it is convenient to work with finite subsets
and to show that their cardinalities are uniformly bounded. This possibility is formalized in
the next criterion.\<close>
lemma finite_if_finite_subsets_card_bdd:
assumes "\<And>G. G \<subseteq> F \<Longrightarrow> finite G \<Longrightarrow> card G \<le> C"
shows "finite F \<and> card F \<le> C"
proof (cases "finite F")
case False
obtain n::nat where n: "n > max C 0" by auto
obtain G where G: "G \<subseteq> F" "card G = n" using infinite_arbitrarily_large[OF False] by auto
hence "finite G" using \<open>n > max C 0\<close> using card.infinite gr_implies_not0 by blast
hence False using assms G n not_less by auto
thus ?thesis ..
next
case True thus ?thesis using assms[of F] by auto
qed
subsubsection \<open>Cardinality of image\<close>
lemma card_image_le: "finite A \<Longrightarrow> card (f ` A) \<le> card A"
by (induct rule: finite_induct) (simp_all add: le_SucI card_insert_if)
lemma card_image: "inj_on f A \<Longrightarrow> card (f ` A) = card A"
proof (induct A rule: infinite_finite_induct)
case (infinite A)
then have "\<not> finite (f ` A)" by (auto dest: finite_imageD)
with infinite show ?case by simp
qed simp_all
lemma bij_betw_same_card: "bij_betw f A B \<Longrightarrow> card A = card B"
by (auto simp: card_image bij_betw_def)
lemma endo_inj_surj: "finite A \<Longrightarrow> f ` A \<subseteq> A \<Longrightarrow> inj_on f A \<Longrightarrow> f ` A = A"
by (simp add: card_seteq card_image)
lemma eq_card_imp_inj_on:
assumes "finite A" "card(f ` A) = card A"
shows "inj_on f A"
using assms
proof (induct rule:finite_induct)
case empty
show ?case by simp
next
case (insert x A)
then show ?case
using card_image_le [of A f] by (simp add: card_insert_if split: if_splits)
qed
lemma inj_on_iff_eq_card: "finite A \<Longrightarrow> inj_on f A \<longleftrightarrow> card (f ` A) = card A"
by (blast intro: card_image eq_card_imp_inj_on)
lemma card_inj_on_le:
assumes "inj_on f A" "f ` A \<subseteq> B" "finite B"
shows "card A \<le> card B"
proof -
have "finite A"
using assms by (blast intro: finite_imageD dest: finite_subset)
then show ?thesis
using assms by (force intro: card_mono simp: card_image [symmetric])
qed
lemma inj_on_iff_card_le:
"\<lbrakk> finite A; finite B \<rbrakk> \<Longrightarrow> (\<exists>f. inj_on f A \<and> f ` A \<le> B) = (card A \<le> card B)"
using card_inj_on_le[of _ A B] card_le_inj[of A B] by blast
lemma surj_card_le: "finite A \<Longrightarrow> B \<subseteq> f ` A \<Longrightarrow> card B \<le> card A"
by (blast intro: card_image_le card_mono le_trans)
lemma card_bij_eq:
"inj_on f A \<Longrightarrow> f ` A \<subseteq> B \<Longrightarrow> inj_on g B \<Longrightarrow> g ` B \<subseteq> A \<Longrightarrow> finite A \<Longrightarrow> finite B
\<Longrightarrow> card A = card B"
by (auto intro: le_antisym card_inj_on_le)
lemma bij_betw_finite: "bij_betw f A B \<Longrightarrow> finite A \<longleftrightarrow> finite B"
unfolding bij_betw_def using finite_imageD [of f A] by auto
lemma inj_on_finite: "inj_on f A \<Longrightarrow> f ` A \<le> B \<Longrightarrow> finite B \<Longrightarrow> finite A"
using finite_imageD finite_subset by blast
lemma card_vimage_inj: "inj f \<Longrightarrow> A \<subseteq> range f \<Longrightarrow> card (f -` A) = card A"
by (auto 4 3 simp: subset_image_iff inj_vimage_image_eq
intro: card_image[symmetric, OF subset_inj_on])
subsubsection \<open>Pigeonhole Principles\<close>
lemma pigeonhole: "card A > card (f ` A) \<Longrightarrow> \<not> inj_on f A "
by (auto dest: card_image less_irrefl_nat)
lemma pigeonhole_infinite:
assumes "\<not> finite A" and "finite (f`A)"
shows "\<exists>a0\<in>A. \<not> finite {a\<in>A. f a = f a0}"
using assms(2,1)
proof (induct "f`A" arbitrary: A rule: finite_induct)
case empty
then show ?case by simp
next
case (insert b F)
show ?case
proof (cases "finite {a\<in>A. f a = b}")
case True
with \<open>\<not> finite A\<close> have "\<not> finite (A - {a\<in>A. f a = b})"
by simp
also have "A - {a\<in>A. f a = b} = {a\<in>A. f a \<noteq> b}"
by blast
finally have "\<not> finite {a\<in>A. f a \<noteq> b}" .
from insert(3)[OF _ this] insert(2,4) show ?thesis
by simp (blast intro: rev_finite_subset)
next
case False
then have "{a \<in> A. f a = b} \<noteq> {}" by force
with False show ?thesis by blast
qed
qed
lemma pigeonhole_infinite_rel:
assumes "\<not> finite A"
and "finite B"
and "\<forall>a\<in>A. \<exists>b\<in>B. R a b"
shows "\<exists>b\<in>B. \<not> finite {a:A. R a b}"
proof -
let ?F = "\<lambda>a. {b\<in>B. R a b}"
from finite_Pow_iff[THEN iffD2, OF \<open>finite B\<close>] have "finite (?F ` A)"
by (blast intro: rev_finite_subset)
from pigeonhole_infinite [where f = ?F, OF assms(1) this]
obtain a0 where "a0 \<in> A" and infinite: "\<not> finite {a\<in>A. ?F a = ?F a0}" ..
obtain b0 where "b0 \<in> B" and "R a0 b0"
using \<open>a0 \<in> A\<close> assms(3) by blast
have "finite {a\<in>A. ?F a = ?F a0}" if "finite {a\<in>A. R a b0}"
using \<open>b0 \<in> B\<close> \<open>R a0 b0\<close> that by (blast intro: rev_finite_subset)
with infinite \<open>b0 \<in> B\<close> show ?thesis
by blast
qed
subsubsection \<open>Cardinality of sums\<close>
lemma card_Plus:
assumes "finite A" "finite B"
shows "card (A <+> B) = card A + card B"
proof -
have "Inl`A \<inter> Inr`B = {}" by fast
with assms show ?thesis
by (simp add: Plus_def card_Un_disjoint card_image)
qed
lemma card_Plus_conv_if:
"card (A <+> B) = (if finite A \<and> finite B then card A + card B else 0)"
by (auto simp add: card_Plus)
text \<open>Relates to equivalence classes. Based on a theorem of F. Kammüller.\<close>
lemma dvd_partition:
assumes f: "finite (\<Union>C)"
and "\<forall>c\<in>C. k dvd card c" "\<forall>c1\<in>C. \<forall>c2\<in>C. c1 \<noteq> c2 \<longrightarrow> c1 \<inter> c2 = {}"
shows "k dvd card (\<Union>C)"
proof -
have "finite C"
by (rule finite_UnionD [OF f])
then show ?thesis
using assms
proof (induct rule: finite_induct)
case empty
show ?case by simp
next
case (insert c C)
then have "c \<inter> \<Union>C = {}"
by auto
with insert show ?case
by (simp add: card_Un_disjoint)
qed
qed
subsubsection \<open>Finite orders\<close>
context order
begin
lemma finite_has_maximal:
"\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> \<exists> m \<in> A. \<forall> b \<in> A. m \<le> b \<longrightarrow> m = b"
proof (induction rule: finite_psubset_induct)
case (psubset A)
from \<open>A \<noteq> {}\<close> obtain a where "a \<in> A" by auto
let ?B = "{b \<in> A. a < b}"
show ?case
proof cases
assume "?B = {}"
hence "\<forall> b \<in> A. a \<le> b \<longrightarrow> a = b" using le_neq_trans by blast
thus ?thesis using \<open>a \<in> A\<close> by blast
next
assume "?B \<noteq> {}"
have "a \<notin> ?B" by auto
hence "?B \<subset> A" using \<open>a \<in> A\<close> by blast
from psubset.IH[OF this \<open>?B \<noteq> {}\<close>] show ?thesis using order.strict_trans2 by blast
qed
qed
lemma finite_has_maximal2:
"\<lbrakk> finite A; a \<in> A \<rbrakk> \<Longrightarrow> \<exists> m \<in> A. a \<le> m \<and> (\<forall> b \<in> A. m \<le> b \<longrightarrow> m = b)"
using finite_has_maximal[of "{b \<in> A. a \<le> b}"] by fastforce
lemma finite_has_minimal:
"\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> \<exists> m \<in> A. \<forall> b \<in> A. b \<le> m \<longrightarrow> m = b"
proof (induction rule: finite_psubset_induct)
case (psubset A)
from \<open>A \<noteq> {}\<close> obtain a where "a \<in> A" by auto
let ?B = "{b \<in> A. b < a}"
show ?case
proof cases
assume "?B = {}"
hence "\<forall> b \<in> A. b \<le> a \<longrightarrow> a = b" using le_neq_trans by blast
thus ?thesis using \<open>a \<in> A\<close> by blast
next
assume "?B \<noteq> {}"
have "a \<notin> ?B" by auto
hence "?B \<subset> A" using \<open>a \<in> A\<close> by blast
from psubset.IH[OF this \<open>?B \<noteq> {}\<close>] show ?thesis using order.strict_trans1 by blast
qed
qed
lemma finite_has_minimal2:
"\<lbrakk> finite A; a \<in> A \<rbrakk> \<Longrightarrow> \<exists> m \<in> A. m \<le> a \<and> (\<forall> b \<in> A. b \<le> m \<longrightarrow> m = b)"
using finite_has_minimal[of "{b \<in> A. b \<le> a}"] by fastforce
end
subsubsection \<open>Relating injectivity and surjectivity\<close>
lemma finite_surj_inj:
assumes "finite A" "A \<subseteq> f ` A"
shows "inj_on f A"
proof -
have "f ` A = A"
by (rule card_seteq [THEN sym]) (auto simp add: assms card_image_le)
then show ?thesis using assms
by (simp add: eq_card_imp_inj_on)
qed
lemma finite_UNIV_surj_inj: "finite(UNIV:: 'a set) \<Longrightarrow> surj f \<Longrightarrow> inj f"
for f :: "'a \<Rightarrow> 'a"
by (blast intro: finite_surj_inj subset_UNIV)
lemma finite_UNIV_inj_surj: "finite(UNIV:: 'a set) \<Longrightarrow> inj f \<Longrightarrow> surj f"
for f :: "'a \<Rightarrow> 'a"
by (fastforce simp:surj_def dest!: endo_inj_surj)
lemma surjective_iff_injective_gen:
assumes fS: "finite S"
and fT: "finite T"
and c: "card S = card T"
and ST: "f ` S \<subseteq> T"
shows "(\<forall>y \<in> T. \<exists>x \<in> S. f x = y) \<longleftrightarrow> inj_on f S"
(is "?lhs \<longleftrightarrow> ?rhs")
proof
assume h: "?lhs"
{
fix x y
assume x: "x \<in> S"
assume y: "y \<in> S"
assume f: "f x = f y"
from x fS have S0: "card S \<noteq> 0"
by auto
have "x = y"
proof (rule ccontr)
assume xy: "\<not> ?thesis"
have th: "card S \<le> card (f ` (S - {y}))"
unfolding c
proof (rule card_mono)
show "finite (f ` (S - {y}))"
by (simp add: fS)
have "\<lbrakk>x \<noteq> y; x \<in> S; z \<in> S; f x = f y\<rbrakk>
\<Longrightarrow> \<exists>x \<in> S. x \<noteq> y \<and> f z = f x" for z
by (case_tac "z = y \<longrightarrow> z = x") auto
then show "T \<subseteq> f ` (S - {y})"
using h xy x y f by fastforce
qed
also have " \<dots> \<le> card (S - {y})"
by (simp add: card_image_le fS)
also have "\<dots> \<le> card S - 1" using y fS by simp
finally show False using S0 by arith
qed
}
then show ?rhs
unfolding inj_on_def by blast
next
assume h: ?rhs
have "f ` S = T"
by (simp add: ST c card_image card_subset_eq fT h)
then show ?lhs by blast
qed
hide_const (open) Finite_Set.fold
subsection \<open>Infinite Sets\<close>
text \<open>
Some elementary facts about infinite sets, mostly by Stephan Merz.
Beware! Because "infinite" merely abbreviates a negation, these
lemmas may not work well with \<open>blast\<close>.
\<close>
abbreviation infinite :: "'a set \<Rightarrow> bool"
where "infinite S \<equiv> \<not> finite S"
text \<open>
Infinite sets are non-empty, and if we remove some elements from an
infinite set, the result is still infinite.
\<close>
lemma infinite_UNIV_nat [iff]: "infinite (UNIV :: nat set)"
proof
assume "finite (UNIV :: nat set)"
with finite_UNIV_inj_surj [of Suc] show False
by simp (blast dest: Suc_neq_Zero surjD)
qed
lemma infinite_UNIV_char_0: "infinite (UNIV :: 'a::semiring_char_0 set)"
proof
assume "finite (UNIV :: 'a set)"
with subset_UNIV have "finite (range of_nat :: 'a set)"
by (rule finite_subset)
moreover have "inj (of_nat :: nat \<Rightarrow> 'a)"
by (simp add: inj_on_def)
ultimately have "finite (UNIV :: nat set)"
by (rule finite_imageD)
then show False
by simp
qed
lemma infinite_imp_nonempty: "infinite S \<Longrightarrow> S \<noteq> {}"
by auto
lemma infinite_remove: "infinite S \<Longrightarrow> infinite (S - {a})"
by simp
lemma Diff_infinite_finite:
assumes "finite T" "infinite S"
shows "infinite (S - T)"
using \<open>finite T\<close>
proof induct
from \<open>infinite S\<close> show "infinite (S - {})"
by auto
next
fix T x
assume ih: "infinite (S - T)"
have "S - (insert x T) = (S - T) - {x}"
by (rule Diff_insert)
with ih show "infinite (S - (insert x T))"
by (simp add: infinite_remove)
qed
lemma Un_infinite: "infinite S \<Longrightarrow> infinite (S \<union> T)"
by simp
lemma infinite_Un: "infinite (S \<union> T) \<longleftrightarrow> infinite S \<or> infinite T"
by simp
lemma infinite_super:
assumes "S \<subseteq> T"
and "infinite S"
shows "infinite T"
proof
assume "finite T"
with \<open>S \<subseteq> T\<close> have "finite S" by (simp add: finite_subset)
with \<open>infinite S\<close> show False by simp
qed
proposition infinite_coinduct [consumes 1, case_names infinite]:
assumes "X A"
and step: "\<And>A. X A \<Longrightarrow> \<exists>x\<in>A. X (A - {x}) \<or> infinite (A - {x})"
shows "infinite A"
proof
assume "finite A"
then show False
using \<open>X A\<close>
proof (induction rule: finite_psubset_induct)
case (psubset A)
then obtain x where "x \<in> A" "X (A - {x}) \<or> infinite (A - {x})"
using local.step psubset.prems by blast
then have "X (A - {x})"
using psubset.hyps by blast
show False
proof (rule psubset.IH [where B = "A - {x}"])
show "A - {x} \<subset> A"
using \<open>x \<in> A\<close> by blast
qed fact
qed
qed
text \<open>
For any function with infinite domain and finite range there is some
element that is the image of infinitely many domain elements. In
particular, any infinite sequence of elements from a finite set
contains some element that occurs infinitely often.
\<close>
lemma inf_img_fin_dom':
assumes img: "finite (f ` A)"
and dom: "infinite A"
shows "\<exists>y \<in> f ` A. infinite (f -` {y} \<inter> A)"
proof (rule ccontr)
have "A \<subseteq> (\<Union>y\<in>f ` A. f -` {y} \<inter> A)" by auto
moreover assume "\<not> ?thesis"
with img have "finite (\<Union>y\<in>f ` A. f -` {y} \<inter> A)" by blast
ultimately have "finite A" by (rule finite_subset)
with dom show False by contradiction
qed
lemma inf_img_fin_domE':
assumes "finite (f ` A)" and "infinite A"
obtains y where "y \<in> f`A" and "infinite (f -` {y} \<inter> A)"
using assms by (blast dest: inf_img_fin_dom')
lemma inf_img_fin_dom:
assumes img: "finite (f`A)" and dom: "infinite A"
shows "\<exists>y \<in> f`A. infinite (f -` {y})"
using inf_img_fin_dom'[OF assms] by auto
lemma inf_img_fin_domE:
assumes "finite (f`A)" and "infinite A"
obtains y where "y \<in> f`A" and "infinite (f -` {y})"
using assms by (blast dest: inf_img_fin_dom)
proposition finite_image_absD: "finite (abs ` S) \<Longrightarrow> finite S"
for S :: "'a::linordered_ring set"
by (rule ccontr) (auto simp: abs_eq_iff vimage_def dest: inf_img_fin_dom)
subsection \<open>The finite powerset operator\<close>
definition Fpow :: "'a set \<Rightarrow> 'a set set"
where "Fpow A \<equiv> {X. X \<subseteq> A \<and> finite X}"
lemma Fpow_mono: "A \<subseteq> B \<Longrightarrow> Fpow A \<subseteq> Fpow B"
unfolding Fpow_def by auto
lemma empty_in_Fpow: "{} \<in> Fpow A"
unfolding Fpow_def by auto
lemma Fpow_not_empty: "Fpow A \<noteq> {}"
using empty_in_Fpow by blast
lemma Fpow_subset_Pow: "Fpow A \<subseteq> Pow A"
unfolding Fpow_def by auto
lemma Fpow_Pow_finite: "Fpow A = Pow A Int {A. finite A}"
unfolding Fpow_def Pow_def by blast
lemma inj_on_image_Fpow:
assumes "inj_on f A"
shows "inj_on (image f) (Fpow A)"
using assms Fpow_subset_Pow[of A] subset_inj_on[of "image f" "Pow A"]
inj_on_image_Pow by blast
lemma image_Fpow_mono:
assumes "f ` A \<subseteq> B"
shows "(image f) ` (Fpow A) \<subseteq> Fpow B"
using assms by(unfold Fpow_def, auto)
end