(* Title: HOL/Nonstandard_Analysis/CLim.thy
Author: Jacques D. Fleuriot
Copyright: 2001 University of Edinburgh
Conversion to Isar and new proofs by Lawrence C Paulson, 2004
*)
section \<open>Limits, Continuity and Differentiation for Complex Functions\<close>
theory CLim
imports CStar
begin
(*not in simpset?*)
declare epsilon_not_zero [simp]
(*??generalize*)
lemma lemma_complex_mult_inverse_squared [simp]: "x \<noteq> 0 \<Longrightarrow> x * (inverse x)\<^sup>2 = inverse x"
for x :: complex
by (simp add: numeral_2_eq_2)
text \<open>Changing the quantified variable. Install earlier?\<close>
lemma all_shift: "(\<forall>x::'a::comm_ring_1. P x) \<longleftrightarrow> (\<forall>x. P (x - a))"
apply auto
apply (drule_tac x = "x + a" in spec)
apply (simp add: add.assoc)
done
lemma complex_add_minus_iff [simp]: "x + - a = 0 \<longleftrightarrow> x = a"
for x a :: complex
by (simp add: diff_eq_eq)
lemma complex_add_eq_0_iff [iff]: "x + y = 0 \<longleftrightarrow> y = - x"
for x y :: complex
apply auto
apply (drule sym [THEN diff_eq_eq [THEN iffD2]])
apply auto
done
subsection \<open>Limit of Complex to Complex Function\<close>
lemma NSLIM_Re: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L \<Longrightarrow> (\<lambda>x. Re (f x)) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S Re L"
by (simp add: NSLIM_def starfunC_approx_Re_Im_iff hRe_hcomplex_of_complex)
lemma NSLIM_Im: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L \<Longrightarrow> (\<lambda>x. Im (f x)) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S Im L"
by (simp add: NSLIM_def starfunC_approx_Re_Im_iff hIm_hcomplex_of_complex)
lemma LIM_Re: "f \<midarrow>a\<rightarrow> L \<Longrightarrow> (\<lambda>x. Re (f x)) \<midarrow>a\<rightarrow> Re L"
for f :: "'a::real_normed_vector \<Rightarrow> complex"
by (simp add: LIM_NSLIM_iff NSLIM_Re)
lemma LIM_Im: "f \<midarrow>a\<rightarrow> L \<Longrightarrow> (\<lambda>x. Im (f x)) \<midarrow>a\<rightarrow> Im L"
for f :: "'a::real_normed_vector \<Rightarrow> complex"
by (simp add: LIM_NSLIM_iff NSLIM_Im)
lemma LIM_cnj: "f \<midarrow>a\<rightarrow> L \<Longrightarrow> (\<lambda>x. cnj (f x)) \<midarrow>a\<rightarrow> cnj L"
for f :: "'a::real_normed_vector \<Rightarrow> complex"
by (simp add: LIM_eq complex_cnj_diff [symmetric] del: complex_cnj_diff)
lemma LIM_cnj_iff: "((\<lambda>x. cnj (f x)) \<midarrow>a\<rightarrow> cnj L) \<longleftrightarrow> f \<midarrow>a\<rightarrow> L"
for f :: "'a::real_normed_vector \<Rightarrow> complex"
by (simp add: LIM_eq complex_cnj_diff [symmetric] del: complex_cnj_diff)
lemma starfun_norm: "( *f* (\<lambda>x. norm (f x))) = (\<lambda>x. hnorm (( *f* f) x))"
by transfer (rule refl)
lemma star_of_Re [simp]: "star_of (Re x) = hRe (star_of x)"
by transfer (rule refl)
lemma star_of_Im [simp]: "star_of (Im x) = hIm (star_of x)"
by transfer (rule refl)
text \<open>Another equivalence result.\<close>
lemma NSCLIM_NSCRLIM_iff: "f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S L \<longleftrightarrow> (\<lambda>y. cmod (f y - L)) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S 0"
by (simp add: NSLIM_def starfun_norm
approx_approx_zero_iff [symmetric] approx_minus_iff [symmetric])
text \<open>Much, much easier standard proof.\<close>
lemma CLIM_CRLIM_iff: "f \<midarrow>x\<rightarrow> L \<longleftrightarrow> (\<lambda>y. cmod (f y - L)) \<midarrow>x\<rightarrow> 0"
for f :: "'a::real_normed_vector \<Rightarrow> complex"
by (simp add: LIM_eq)
text \<open>So this is nicer nonstandard proof.\<close>
lemma NSCLIM_NSCRLIM_iff2: "f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S L \<longleftrightarrow> (\<lambda>y. cmod (f y - L)) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S 0"
by (simp add: LIM_NSLIM_iff [symmetric] CLIM_CRLIM_iff)
lemma NSLIM_NSCRLIM_Re_Im_iff:
"f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L \<longleftrightarrow> (\<lambda>x. Re (f x)) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S Re L \<and> (\<lambda>x. Im (f x)) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S Im L"
apply (auto intro: NSLIM_Re NSLIM_Im)
apply (auto simp add: NSLIM_def starfun_Re starfun_Im)
apply (auto dest!: spec)
apply (simp add: hcomplex_approx_iff)
done
lemma LIM_CRLIM_Re_Im_iff: "f \<midarrow>a\<rightarrow> L \<longleftrightarrow> (\<lambda>x. Re (f x)) \<midarrow>a\<rightarrow> Re L \<and> (\<lambda>x. Im (f x)) \<midarrow>a\<rightarrow> Im L"
for f :: "'a::real_normed_vector \<Rightarrow> complex"
by (simp add: LIM_NSLIM_iff NSLIM_NSCRLIM_Re_Im_iff)
subsection \<open>Continuity\<close>
lemma NSLIM_isContc_iff: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S f a \<longleftrightarrow> (\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow>\<^sub>N\<^sub>S f a"
by (rule NSLIM_at0_iff)
subsection \<open>Functions from Complex to Reals\<close>
lemma isNSContCR_cmod [simp]: "isNSCont cmod a"
by (auto intro: approx_hnorm
simp: starfunCR_cmod hcmod_hcomplex_of_complex [symmetric] isNSCont_def)
lemma isContCR_cmod [simp]: "isCont cmod a"
by (simp add: isNSCont_isCont_iff [symmetric])
lemma isCont_Re: "isCont f a \<Longrightarrow> isCont (\<lambda>x. Re (f x)) a"
for f :: "'a::real_normed_vector \<Rightarrow> complex"
by (simp add: isCont_def LIM_Re)
lemma isCont_Im: "isCont f a \<Longrightarrow> isCont (\<lambda>x. Im (f x)) a"
for f :: "'a::real_normed_vector \<Rightarrow> complex"
by (simp add: isCont_def LIM_Im)
subsection \<open>Differentiation of Natural Number Powers\<close>
lemma CDERIV_pow [simp]: "DERIV (\<lambda>x. x ^ n) x :> complex_of_real (real n) * (x ^ (n - Suc 0))"
apply (induct n)
apply (drule_tac [2] DERIV_ident [THEN DERIV_mult])
apply (auto simp add: distrib_right of_nat_Suc)
apply (case_tac "n")
apply (auto simp add: ac_simps)
done
text \<open>Nonstandard version.\<close>
lemma NSCDERIV_pow: "NSDERIV (\<lambda>x. x ^ n) x :> complex_of_real (real n) * (x ^ (n - 1))"
by (metis CDERIV_pow NSDERIV_DERIV_iff One_nat_def)
text \<open>Can't relax the premise \<^term>\<open>x \<noteq> 0\<close>: it isn't continuous at zero.\<close>
lemma NSCDERIV_inverse: "x \<noteq> 0 \<Longrightarrow> NSDERIV (\<lambda>x. inverse x) x :> - (inverse x)\<^sup>2"
for x :: complex
unfolding numeral_2_eq_2 by (rule NSDERIV_inverse)
lemma CDERIV_inverse: "x \<noteq> 0 \<Longrightarrow> DERIV (\<lambda>x. inverse x) x :> - (inverse x)\<^sup>2"
for x :: complex
unfolding numeral_2_eq_2 by (rule DERIV_inverse)
subsection \<open>Derivative of Reciprocals (Function \<^term>\<open>inverse\<close>)\<close>
lemma CDERIV_inverse_fun:
"DERIV f x :> d \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow> DERIV (\<lambda>x. inverse (f x)) x :> - (d * inverse ((f x)\<^sup>2))"
for x :: complex
unfolding numeral_2_eq_2 by (rule DERIV_inverse_fun)
lemma NSCDERIV_inverse_fun:
"NSDERIV f x :> d \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow> NSDERIV (\<lambda>x. inverse (f x)) x :> - (d * inverse ((f x)\<^sup>2))"
for x :: complex
unfolding numeral_2_eq_2 by (rule NSDERIV_inverse_fun)
subsection \<open>Derivative of Quotient\<close>
lemma CDERIV_quotient:
"DERIV f x :> d \<Longrightarrow> DERIV g x :> e \<Longrightarrow> g(x) \<noteq> 0 \<Longrightarrow>
DERIV (\<lambda>y. f y / g y) x :> (d * g x - (e * f x)) / (g x)\<^sup>2"
for x :: complex
unfolding numeral_2_eq_2 by (rule DERIV_quotient)
lemma NSCDERIV_quotient:
"NSDERIV f x :> d \<Longrightarrow> NSDERIV g x :> e \<Longrightarrow> g x \<noteq> (0::complex) \<Longrightarrow>
NSDERIV (\<lambda>y. f y / g y) x :> (d * g x - (e * f x)) / (g x)\<^sup>2"
unfolding numeral_2_eq_2 by (rule NSDERIV_quotient)
subsection \<open>Caratheodory Formulation of Derivative at a Point: Standard Proof\<close>
lemma CARAT_CDERIVD:
"(\<forall>z. f z - f x = g z * (z - x)) \<and> isNSCont g x \<and> g x = l \<Longrightarrow> NSDERIV f x :> l"
by clarify (rule CARAT_DERIVD)
end