(*  Title:      HOLCF/cfun1.thy
    ID:         $Id$
    Author:     Franz Regensburger
    Copyright   1993 Technische Universitaet Muenchen
Definition of the type ->  of continuous functions
*)
Cfun1 = Cont +
(* new type of continuous functions *)
types "->" 2        (infixr 5)
arities "->" :: (pcpo,pcpo)term         (* No properties for ->'s range *)
consts  
        Cfun    :: "('a => 'b)set"
        fapp    :: "('a -> 'b)=>('a => 'b)"     (* usually Rep_Cfun *)
                                                (* application      *)
        fabs    :: "('a => 'b)=>('a -> 'b)"     (binder "LAM " 10)
                                                (* usually Abs_Cfun *)
                                                (* abstraction      *)
        less_cfun :: "[('a -> 'b),('a -> 'b)]=>bool"
syntax  "@fapp"     :: "('a -> 'b)=>('a => 'b)" ("_`_" [999,1000] 999)
translations "f`x" == "fapp f x"
syntax (symbols)
  "->"		:: [type, type] => type		("(_ \\<rightarrow>/ _)" [6,5]5)
  "LAM "	:: "[idts, 'a => 'b] => ('a -> 'b)"
					("(3\\<Lambda>_./ _)" [0, 10] 10)
defs 
  Cfun_def      "Cfun == {f. cont(f)}"
rules
  (*faking a type definition... *)
  (* -> is isomorphic to Cfun   *)
  Rep_Cfun              "fapp fo : Cfun"
  Rep_Cfun_inverse      "fabs (fapp fo) = fo"
  Abs_Cfun_inverse      "f:Cfun ==> fapp(fabs f) = f"
defs
  (*defining the abstract constants*)
  less_cfun_def         "less_cfun fo1 fo2 == ( fapp fo1 << fapp fo2 )"
end