(* Title: HOL/AxClasses/Group/Group.ML
ID: $Id$
Author: Markus Wenzel, TU Muenchen
Some basic theorems of group theory.
*)
fun sub r = standard (r RS subst);
fun ssub r = standard (r RS ssubst);
Goal "x * inverse x = (1::'a::group)";
by (rtac (sub left_unit) 1);
back();
by (rtac (sub assoc) 1);
by (rtac (sub left_inverse) 1);
back();
back();
by (rtac (ssub assoc) 1);
back();
by (rtac (ssub left_inverse) 1);
by (rtac (ssub assoc) 1);
by (rtac (ssub left_unit) 1);
by (rtac (ssub left_inverse) 1);
by (rtac refl 1);
qed "right_inverse";
Goal "x * 1 = (x::'a::group)";
by (rtac (sub left_inverse) 1);
by (rtac (sub assoc) 1);
by (rtac (ssub right_inverse) 1);
by (rtac (ssub left_unit) 1);
by (rtac refl 1);
qed "right_unit";
Goal "e * x = x --> e = (1::'a::group)";
by (rtac impI 1);
by (rtac (sub right_unit) 1);
back();
by (res_inst_tac [("x", "x")] (sub right_inverse) 1);
by (rtac (sub assoc) 1);
by (rtac arg_cong 1);
back();
by (assume_tac 1);
qed "strong_one_unit";
Goal "EX! e. ALL x. e * x = (x::'a::group)";
by (rtac ex1I 1);
by (rtac allI 1);
by (rtac left_unit 1);
by (rtac mp 1);
by (rtac strong_one_unit 1);
by (etac allE 1);
by (assume_tac 1);
qed "ex1_unit";
Goal "ALL x. EX! e. e * x = (x::'a::group)";
by (rtac allI 1);
by (rtac ex1I 1);
by (rtac left_unit 1);
by (rtac (strong_one_unit RS mp) 1);
by (assume_tac 1);
qed "ex1_unit'";
Goal "inj (op * (x::'a::group))";
by (rtac injI 1);
by (rtac (sub left_unit) 1);
back();
by (rtac (sub left_unit) 1);
by (res_inst_tac [("x", "x")] (sub left_inverse) 1);
by (rtac (ssub assoc) 1);
back();
by (rtac (ssub assoc) 1);
by (rtac arg_cong 1);
back();
by (assume_tac 1);
qed "inj_times";
Goal "y * x = 1 --> y = inverse (x::'a::group)";
by (rtac impI 1);
by (rtac (sub right_unit) 1);
back();
back();
by (rtac (sub right_unit) 1);
by (res_inst_tac [("x", "x")] (sub right_inverse) 1);
by (rtac (sub assoc) 1);
by (rtac (sub assoc) 1);
by (rtac arg_cong 1);
back();
by (rtac (ssub left_inverse) 1);
by (assume_tac 1);
qed "one_inverse";
Goal "ALL x. EX! y. y * x = (1::'a::group)";
by (rtac allI 1);
by (rtac ex1I 1);
by (rtac left_inverse 1);
by (rtac mp 1);
by (rtac one_inverse 1);
by (assume_tac 1);
qed "ex1_inverse";
Goal "inverse (x * y) = inverse y * inverse (x::'a::group)";
by (rtac sym 1);
by (rtac mp 1);
by (rtac one_inverse 1);
by (rtac (ssub assoc) 1);
by (rtac (sub assoc) 1);
back();
by (rtac (ssub left_inverse) 1);
by (rtac (ssub left_unit) 1);
by (rtac (ssub left_inverse) 1);
by (rtac refl 1);
qed "inverse_times";
Goal "inverse (inverse x) = (x::'a::group)";
by (rtac sym 1);
by (rtac (one_inverse RS mp) 1);
by (rtac (ssub right_inverse) 1);
by (rtac refl 1);
qed "inverse_inverse";