src/ZF/arith_data.ML
author nipkow
Sun, 05 Jan 2003 21:03:14 +0100
changeset 13771 6cd59cc885a1
parent 13487 1291c6375c29
child 14387 e96d5c42c4b0
permissions -rw-r--r--
*** empty log message ***

(*  Title:      ZF/arith_data.ML
    ID:         $Id$
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   2000  University of Cambridge

Arithmetic simplification: cancellation of common terms
*)

signature ARITH_DATA =
sig
  (*the main outcome*)
  val nat_cancel: simproc list
  (*tools for use in similar applications*)
  val gen_trans_tac: thm -> thm option -> tactic
  val prove_conv: string -> tactic list -> Sign.sg ->
                  thm list -> string list -> term * term -> thm option
  val simplify_meta_eq: thm list -> thm -> thm
  (*debugging*)
  structure EqCancelNumeralsData   : CANCEL_NUMERALS_DATA
  structure LessCancelNumeralsData : CANCEL_NUMERALS_DATA
  structure DiffCancelNumeralsData : CANCEL_NUMERALS_DATA
end;


structure ArithData: ARITH_DATA =
struct

val iT = Ind_Syntax.iT;

val zero = Const("0", iT);
val succ = Const("succ", iT --> iT);
fun mk_succ t = succ $ t;
val one = mk_succ zero;

val mk_plus = FOLogic.mk_binop "Arith.add";

(*Thus mk_sum[t] yields t+#0; longer sums don't have a trailing zero*)
fun mk_sum []        = zero
  | mk_sum [t,u]     = mk_plus (t, u)
  | mk_sum (t :: ts) = mk_plus (t, mk_sum ts);

(*this version ALWAYS includes a trailing zero*)
fun long_mk_sum []        = zero
  | long_mk_sum (t :: ts) = mk_plus (t, mk_sum ts);

val dest_plus = FOLogic.dest_bin "Arith.add" iT;

(* dest_sum *)

fun dest_sum (Const("0",_)) = []
  | dest_sum (Const("succ",_) $ t) = one :: dest_sum t
  | dest_sum (Const("Arith.add",_) $ t $ u) = dest_sum t @ dest_sum u
  | dest_sum tm = [tm];

(*Apply the given rewrite (if present) just once*)
fun gen_trans_tac th2 None      = all_tac
  | gen_trans_tac th2 (Some th) = ALLGOALS (rtac (th RS th2));

(*Use <-> or = depending on the type of t*)
fun mk_eq_iff(t,u) =
  if fastype_of t = iT then FOLogic.mk_eq(t,u)
                       else FOLogic.mk_iff(t,u);

(*We remove equality assumptions because they confuse the simplifier and
  because only type-checking assumptions are necessary.*)
fun is_eq_thm th =
    can FOLogic.dest_eq (FOLogic.dest_Trueprop (#prop (rep_thm th)));

fun add_chyps chyps ct = Drule.list_implies (map cprop_of chyps, ct);

fun prove_conv name tacs sg hyps xs (t,u) =
  if t aconv u then None
  else
  let val hyps' = filter (not o is_eq_thm) hyps
      val goal = Logic.list_implies (map (#prop o Thm.rep_thm) hyps',
        FOLogic.mk_Trueprop (mk_eq_iff (t, u)));
  in Some (hyps' MRS Tactic.prove sg xs [] goal (K (EVERY tacs)))
      handle ERROR_MESSAGE msg =>
        (warning (msg ^ "\nCancellation failed: no typing information? (" ^ name ^ ")"); None)
  end;

fun prep_simproc (name, pats, proc) =
  Simplifier.simproc (Theory.sign_of (the_context ())) name pats proc;


(*** Use CancelNumerals simproc without binary numerals,
     just for cancellation ***)

val mk_times = FOLogic.mk_binop "Arith.mult";

fun mk_prod [] = one
  | mk_prod [t] = t
  | mk_prod (t :: ts) = if t = one then mk_prod ts
                        else mk_times (t, mk_prod ts);

val dest_times = FOLogic.dest_bin "Arith.mult" iT;

fun dest_prod t =
      let val (t,u) = dest_times t
      in  dest_prod t @ dest_prod u  end
      handle TERM _ => [t];

(*Dummy version: the only arguments are 0 and 1*)
fun mk_coeff (0, t) = zero
  | mk_coeff (1, t) = t
  | mk_coeff _       = raise TERM("mk_coeff", []);

(*Dummy version: the "coefficient" is always 1.
  In the result, the factors are sorted terms*)
fun dest_coeff t = (1, mk_prod (sort Term.term_ord (dest_prod t)));

(*Find first coefficient-term THAT MATCHES u*)
fun find_first_coeff past u [] = raise TERM("find_first_coeff", [])
  | find_first_coeff past u (t::terms) =
        let val (n,u') = dest_coeff t
        in  if u aconv u' then (n, rev past @ terms)
                          else find_first_coeff (t::past) u terms
        end
        handle TERM _ => find_first_coeff (t::past) u terms;


(*Simplify #1*n and n*#1 to n*)
val add_0s = [add_0_natify, add_0_right_natify];
val add_succs = [add_succ, add_succ_right];
val mult_1s = [mult_1_natify, mult_1_right_natify];
val tc_rules = [natify_in_nat, add_type, diff_type, mult_type];
val natifys = [natify_0, natify_ident, add_natify1, add_natify2,
               diff_natify1, diff_natify2];

(*Final simplification: cancel + and **)
fun simplify_meta_eq rules =
    mk_meta_eq o
    simplify (FOL_ss addeqcongs[eq_cong2,iff_cong2]
                     delsimps iff_simps (*these could erase the whole rule!*)
                     addsimps rules);

val final_rules = add_0s @ mult_1s @ [mult_0, mult_0_right];

structure CancelNumeralsCommon =
  struct
  val mk_sum            = mk_sum
  val dest_sum          = dest_sum
  val mk_coeff          = mk_coeff
  val dest_coeff        = dest_coeff
  val find_first_coeff  = find_first_coeff []
  val norm_tac_ss1 = ZF_ss addsimps add_0s@add_succs@mult_1s@add_ac
  val norm_tac_ss2 = ZF_ss addsimps add_0s@mult_1s@
                                    add_ac@mult_ac@tc_rules@natifys
  val norm_tac = ALLGOALS (asm_simp_tac norm_tac_ss1)
                 THEN ALLGOALS (asm_simp_tac norm_tac_ss2)
  val numeral_simp_tac_ss = ZF_ss addsimps add_0s@tc_rules@natifys
  val numeral_simp_tac  = ALLGOALS (asm_simp_tac numeral_simp_tac_ss)
  val simplify_meta_eq  = simplify_meta_eq final_rules
  end;

(** The functor argumnets are declared as separate structures
    so that they can be exported to ease debugging. **)

structure EqCancelNumeralsData =
  struct
  open CancelNumeralsCommon
  val prove_conv = prove_conv "nateq_cancel_numerals"
  val mk_bal   = FOLogic.mk_eq
  val dest_bal = FOLogic.dest_eq
  val bal_add1 = eq_add_iff RS iff_trans
  val bal_add2 = eq_add_iff RS iff_trans
  val trans_tac = gen_trans_tac iff_trans
  end;

structure EqCancelNumerals = CancelNumeralsFun(EqCancelNumeralsData);

structure LessCancelNumeralsData =
  struct
  open CancelNumeralsCommon
  val prove_conv = prove_conv "natless_cancel_numerals"
  val mk_bal   = FOLogic.mk_binrel "Ordinal.lt"
  val dest_bal = FOLogic.dest_bin "Ordinal.lt" iT
  val bal_add1 = less_add_iff RS iff_trans
  val bal_add2 = less_add_iff RS iff_trans
  val trans_tac = gen_trans_tac iff_trans
  end;

structure LessCancelNumerals = CancelNumeralsFun(LessCancelNumeralsData);

structure DiffCancelNumeralsData =
  struct
  open CancelNumeralsCommon
  val prove_conv = prove_conv "natdiff_cancel_numerals"
  val mk_bal   = FOLogic.mk_binop "Arith.diff"
  val dest_bal = FOLogic.dest_bin "Arith.diff" iT
  val bal_add1 = diff_add_eq RS trans
  val bal_add2 = diff_add_eq RS trans
  val trans_tac = gen_trans_tac trans
  end;

structure DiffCancelNumerals = CancelNumeralsFun(DiffCancelNumeralsData);


val nat_cancel =
  map prep_simproc
   [("nateq_cancel_numerals",
     ["l #+ m = n", "l = m #+ n",
      "l #* m = n", "l = m #* n",
      "succ(m) = n", "m = succ(n)"],
     EqCancelNumerals.proc),
    ("natless_cancel_numerals",
     ["l #+ m < n", "l < m #+ n",
      "l #* m < n", "l < m #* n",
      "succ(m) < n", "m < succ(n)"],
     LessCancelNumerals.proc),
    ("natdiff_cancel_numerals",
     ["(l #+ m) #- n", "l #- (m #+ n)",
      "(l #* m) #- n", "l #- (m #* n)",
      "succ(m) #- n", "m #- succ(n)"],
     DiffCancelNumerals.proc)];

end;

Addsimprocs ArithData.nat_cancel;


(*examples:
print_depth 22;
set timing;
set trace_simp;
fun test s = (Goal s; by (Asm_simp_tac 1));

test "x #+ y = x #+ z";
test "y #+ x = x #+ z";
test "x #+ y #+ z = x #+ z";
test "y #+ (z #+ x) = z #+ x";
test "x #+ y #+ z = (z #+ y) #+ (x #+ w)";
test "x#*y #+ z = (z #+ y) #+ (y#*x #+ w)";

test "x #+ succ(y) = x #+ z";
test "x #+ succ(y) = succ(z #+ x)";
test "succ(x) #+ succ(y) #+ z = succ(z #+ y) #+ succ(x #+ w)";

test "(x #+ y) #- (x #+ z) = w";
test "(y #+ x) #- (x #+ z) = dd";
test "(x #+ y #+ z) #- (x #+ z) = dd";
test "(y #+ (z #+ x)) #- (z #+ x) = dd";
test "(x #+ y #+ z) #- ((z #+ y) #+ (x #+ w)) = dd";
test "(x#*y #+ z) #- ((z #+ y) #+ (y#*x #+ w)) = dd";

(*BAD occurrence of natify*)
test "(x #+ succ(y)) #- (x #+ z) = dd";

test "x #* y2 #+ y #* x2 = y #* x2 #+ x #* y2";

test "(x #+ succ(y)) #- (succ(z #+ x)) = dd";
test "(succ(x) #+ succ(y) #+ z) #- (succ(z #+ y) #+ succ(x #+ w)) = dd";

(*use of typing information*)
test "x : nat ==> x #+ y = x";
test "x : nat --> x #+ y = x";
test "x : nat ==> x #+ y < x";
test "x : nat ==> x < y#+x";
test "x : nat ==> x le succ(x)";

(*fails: no typing information isn't visible*)
test "x #+ y = x";

test "x #+ y < x #+ z";
test "y #+ x < x #+ z";
test "x #+ y #+ z < x #+ z";
test "y #+ z #+ x < x #+ z";
test "y #+ (z #+ x) < z #+ x";
test "x #+ y #+ z < (z #+ y) #+ (x #+ w)";
test "x#*y #+ z < (z #+ y) #+ (y#*x #+ w)";

test "x #+ succ(y) < x #+ z";
test "x #+ succ(y) < succ(z #+ x)";
test "succ(x) #+ succ(y) #+ z < succ(z #+ y) #+ succ(x #+ w)";

test "x #+ succ(y) le succ(z #+ x)";
*)