explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
(* Title: HOL/NanoJava/AxSem.thy
Author: David von Oheimb, Technische Universitaet Muenchen
*)
header "Axiomatic Semantics"
theory AxSem imports State begin
type_synonym assn = "state => bool"
type_synonym vassn = "val => assn"
type_synonym triple = "assn \<times> stmt \<times> assn"
type_synonym etriple = "assn \<times> expr \<times> vassn"
translations
(type) "assn" \<leftharpoondown> (type) "state => bool"
(type) "vassn" \<leftharpoondown> (type) "val => assn"
(type) "triple" \<leftharpoondown> (type) "assn \<times> stmt \<times> assn"
(type) "etriple" \<leftharpoondown> (type) "assn \<times> expr \<times> vassn"
subsection "Hoare Logic Rules"
inductive
hoare :: "[triple set, triple set] => bool" ("_ |\<turnstile>/ _" [61, 61] 60)
and ehoare :: "[triple set, etriple] => bool" ("_ |\<turnstile>\<^sub>e/ _" [61, 61] 60)
and hoare1 :: "[triple set, assn,stmt,assn] => bool"
("_ \<turnstile>/ ({(1_)}/ (_)/ {(1_)})" [61, 3, 90, 3] 60)
and ehoare1 :: "[triple set, assn,expr,vassn]=> bool"
("_ \<turnstile>\<^sub>e/ ({(1_)}/ (_)/ {(1_)})" [61, 3, 90, 3] 60)
where
"A \<turnstile> {P}c{Q} \<equiv> A |\<turnstile> {(P,c,Q)}"
| "A \<turnstile>\<^sub>e {P}e{Q} \<equiv> A |\<turnstile>\<^sub>e (P,e,Q)"
| Skip: "A \<turnstile> {P} Skip {P}"
| Comp: "[| A \<turnstile> {P} c1 {Q}; A \<turnstile> {Q} c2 {R} |] ==> A \<turnstile> {P} c1;;c2 {R}"
| Cond: "[| A \<turnstile>\<^sub>e {P} e {Q};
\<forall>v. A \<turnstile> {Q v} (if v \<noteq> Null then c1 else c2) {R} |] ==>
A \<turnstile> {P} If(e) c1 Else c2 {R}"
| Loop: "A \<turnstile> {\<lambda>s. P s \<and> s<x> \<noteq> Null} c {P} ==>
A \<turnstile> {P} While(x) c {\<lambda>s. P s \<and> s<x> = Null}"
| LAcc: "A \<turnstile>\<^sub>e {\<lambda>s. P (s<x>) s} LAcc x {P}"
| LAss: "A \<turnstile>\<^sub>e {P} e {\<lambda>v s. Q (lupd(x\<mapsto>v) s)} ==>
A \<turnstile> {P} x:==e {Q}"
| FAcc: "A \<turnstile>\<^sub>e {P} e {\<lambda>v s. \<forall>a. v=Addr a --> Q (get_field s a f) s} ==>
A \<turnstile>\<^sub>e {P} e..f {Q}"
| FAss: "[| A \<turnstile>\<^sub>e {P} e1 {\<lambda>v s. \<forall>a. v=Addr a --> Q a s};
\<forall>a. A \<turnstile>\<^sub>e {Q a} e2 {\<lambda>v s. R (upd_obj a f v s)} |] ==>
A \<turnstile> {P} e1..f:==e2 {R}"
| NewC: "A \<turnstile>\<^sub>e {\<lambda>s. \<forall>a. new_Addr s = Addr a --> P (Addr a) (new_obj a C s)}
new C {P}"
| Cast: "A \<turnstile>\<^sub>e {P} e {\<lambda>v s. (case v of Null => True
| Addr a => obj_class s a <=C C) --> Q v s} ==>
A \<turnstile>\<^sub>e {P} Cast C e {Q}"
| Call: "[| A \<turnstile>\<^sub>e {P} e1 {Q}; \<forall>a. A \<turnstile>\<^sub>e {Q a} e2 {R a};
\<forall>a p ls. A \<turnstile> {\<lambda>s'. \<exists>s. R a p s \<and> ls = s \<and>
s' = lupd(This\<mapsto>a)(lupd(Par\<mapsto>p)(del_locs s))}
Meth (C,m) {\<lambda>s. S (s<Res>) (set_locs ls s)} |] ==>
A \<turnstile>\<^sub>e {P} {C}e1..m(e2) {S}"
| Meth: "\<forall>D. A \<turnstile> {\<lambda>s'. \<exists>s a. s<This> = Addr a \<and> D = obj_class s a \<and> D <=C C \<and>
P s \<and> s' = init_locs D m s}
Impl (D,m) {Q} ==>
A \<turnstile> {P} Meth (C,m) {Q}"
--{* @{text "\<Union>Z"} instead of @{text "\<forall>Z"} in the conclusion and\\
Z restricted to type state due to limitations of the inductive package *}
| Impl: "\<forall>Z::state. A\<union> (\<Union>Z. (\<lambda>Cm. (P Z Cm, Impl Cm, Q Z Cm))`Ms) |\<turnstile>
(\<lambda>Cm. (P Z Cm, body Cm, Q Z Cm))`Ms ==>
A |\<turnstile> (\<lambda>Cm. (P Z Cm, Impl Cm, Q Z Cm))`Ms"
--{* structural rules *}
| Asm: " a \<in> A ==> A |\<turnstile> {a}"
| ConjI: " \<forall>c \<in> C. A |\<turnstile> {c} ==> A |\<turnstile> C"
| ConjE: "[|A |\<turnstile> C; c \<in> C |] ==> A |\<turnstile> {c}"
--{* Z restricted to type state due to limitations of the inductive package *}
| Conseq:"[| \<forall>Z::state. A \<turnstile> {P' Z} c {Q' Z};
\<forall>s t. (\<forall>Z. P' Z s --> Q' Z t) --> (P s --> Q t) |] ==>
A \<turnstile> {P} c {Q }"
--{* Z restricted to type state due to limitations of the inductive package *}
| eConseq:"[| \<forall>Z::state. A \<turnstile>\<^sub>e {P' Z} e {Q' Z};
\<forall>s v t. (\<forall>Z. P' Z s --> Q' Z v t) --> (P s --> Q v t) |] ==>
A \<turnstile>\<^sub>e {P} e {Q }"
subsection "Fully polymorphic variants, required for Example only"
axiomatization where
Conseq:"[| \<forall>Z. A \<turnstile> {P' Z} c {Q' Z};
\<forall>s t. (\<forall>Z. P' Z s --> Q' Z t) --> (P s --> Q t) |] ==>
A \<turnstile> {P} c {Q }"
axiomatization where
eConseq:"[| \<forall>Z. A \<turnstile>\<^sub>e {P' Z} e {Q' Z};
\<forall>s v t. (\<forall>Z. P' Z s --> Q' Z v t) --> (P s --> Q v t) |] ==>
A \<turnstile>\<^sub>e {P} e {Q }"
axiomatization where
Impl: "\<forall>Z. A\<union> (\<Union>Z. (\<lambda>Cm. (P Z Cm, Impl Cm, Q Z Cm))`Ms) |\<turnstile>
(\<lambda>Cm. (P Z Cm, body Cm, Q Z Cm))`Ms ==>
A |\<turnstile> (\<lambda>Cm. (P Z Cm, Impl Cm, Q Z Cm))`Ms"
subsection "Derived Rules"
lemma Conseq1: "\<lbrakk>A \<turnstile> {P'} c {Q}; \<forall>s. P s \<longrightarrow> P' s\<rbrakk> \<Longrightarrow> A \<turnstile> {P} c {Q}"
apply (rule hoare_ehoare.Conseq)
apply (rule allI, assumption)
apply fast
done
lemma Conseq2: "\<lbrakk>A \<turnstile> {P} c {Q'}; \<forall>t. Q' t \<longrightarrow> Q t\<rbrakk> \<Longrightarrow> A \<turnstile> {P} c {Q}"
apply (rule hoare_ehoare.Conseq)
apply (rule allI, assumption)
apply fast
done
lemma eConseq1: "\<lbrakk>A \<turnstile>\<^sub>e {P'} e {Q}; \<forall>s. P s \<longrightarrow> P' s\<rbrakk> \<Longrightarrow> A \<turnstile>\<^sub>e {P} e {Q}"
apply (rule hoare_ehoare.eConseq)
apply (rule allI, assumption)
apply fast
done
lemma eConseq2: "\<lbrakk>A \<turnstile>\<^sub>e {P} e {Q'}; \<forall>v t. Q' v t \<longrightarrow> Q v t\<rbrakk> \<Longrightarrow> A \<turnstile>\<^sub>e {P} e {Q}"
apply (rule hoare_ehoare.eConseq)
apply (rule allI, assumption)
apply fast
done
lemma Weaken: "\<lbrakk>A |\<turnstile> C'; C \<subseteq> C'\<rbrakk> \<Longrightarrow> A |\<turnstile> C"
apply (rule hoare_ehoare.ConjI)
apply clarify
apply (drule hoare_ehoare.ConjE)
apply fast
apply assumption
done
lemma Thin_lemma:
"(A' |\<turnstile> C \<longrightarrow> (\<forall>A. A' \<subseteq> A \<longrightarrow> A |\<turnstile> C )) \<and>
(A' \<turnstile>\<^sub>e {P} e {Q} \<longrightarrow> (\<forall>A. A' \<subseteq> A \<longrightarrow> A \<turnstile>\<^sub>e {P} e {Q}))"
apply (rule hoare_ehoare.induct)
apply (tactic "ALLGOALS(EVERY'[clarify_tac @{context}, REPEAT o smp_tac 1])")
apply (blast intro: hoare_ehoare.Skip)
apply (blast intro: hoare_ehoare.Comp)
apply (blast intro: hoare_ehoare.Cond)
apply (blast intro: hoare_ehoare.Loop)
apply (blast intro: hoare_ehoare.LAcc)
apply (blast intro: hoare_ehoare.LAss)
apply (blast intro: hoare_ehoare.FAcc)
apply (blast intro: hoare_ehoare.FAss)
apply (blast intro: hoare_ehoare.NewC)
apply (blast intro: hoare_ehoare.Cast)
apply (erule hoare_ehoare.Call)
apply (rule, drule spec, erule conjE, tactic "smp_tac 1 1", assumption)
apply blast
apply (blast intro!: hoare_ehoare.Meth)
apply (blast intro!: hoare_ehoare.Impl)
apply (blast intro!: hoare_ehoare.Asm)
apply (blast intro: hoare_ehoare.ConjI)
apply (blast intro: hoare_ehoare.ConjE)
apply (rule hoare_ehoare.Conseq)
apply (rule, drule spec, erule conjE, tactic "smp_tac 1 1", assumption+)
apply (rule hoare_ehoare.eConseq)
apply (rule, drule spec, erule conjE, tactic "smp_tac 1 1", assumption+)
done
lemma cThin: "\<lbrakk>A' |\<turnstile> C; A' \<subseteq> A\<rbrakk> \<Longrightarrow> A |\<turnstile> C"
by (erule (1) conjunct1 [OF Thin_lemma, rule_format])
lemma eThin: "\<lbrakk>A' \<turnstile>\<^sub>e {P} e {Q}; A' \<subseteq> A\<rbrakk> \<Longrightarrow> A \<turnstile>\<^sub>e {P} e {Q}"
by (erule (1) conjunct2 [OF Thin_lemma, rule_format])
lemma Union: "A |\<turnstile> (\<Union>Z. C Z) = (\<forall>Z. A |\<turnstile> C Z)"
by (auto intro: hoare_ehoare.ConjI hoare_ehoare.ConjE)
lemma Impl1':
"\<lbrakk>\<forall>Z::state. A\<union> (\<Union>Z. (\<lambda>Cm. (P Z Cm, Impl Cm, Q Z Cm))`Ms) |\<turnstile>
(\<lambda>Cm. (P Z Cm, body Cm, Q Z Cm))`Ms;
Cm \<in> Ms\<rbrakk> \<Longrightarrow>
A \<turnstile> {P Z Cm} Impl Cm {Q Z Cm}"
apply (drule AxSem.Impl)
apply (erule Weaken)
apply (auto del: image_eqI intro: rev_image_eqI)
done
lemmas Impl1 = AxSem.Impl [of _ _ _ "{Cm}", simplified] for Cm
end