explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
(* Title: HOL/NanoJava/Example.thy
Author: David von Oheimb
Copyright 2001 Technische Universitaet Muenchen
*)
header "Example"
theory Example
imports Equivalence
begin
text {*
\begin{verbatim}
class Nat {
Nat pred;
Nat suc()
{ Nat n = new Nat(); n.pred = this; return n; }
Nat eq(Nat n)
{ if (this.pred != null) if (n.pred != null) return this.pred.eq(n.pred);
else return n.pred; // false
else if (n.pred != null) return this.pred; // false
else return this.suc(); // true
}
Nat add(Nat n)
{ if (this.pred != null) return this.pred.add(n.suc()); else return n; }
public static void main(String[] args) // test x+1=1+x
{
Nat one = new Nat().suc();
Nat x = new Nat().suc().suc().suc().suc();
Nat ok = x.suc().eq(x.add(one));
System.out.println(ok != null);
}
}
\end{verbatim}
*}
axiomatization where
This_neq_Par [simp]: "This \<noteq> Par" and
Res_neq_This [simp]: "Res \<noteq> This"
subsection "Program representation"
axiomatization
N :: cname ("Nat") (* with mixfix because of clash with NatDef.Nat *)
and pred :: fname
and suc add :: mname
and any :: vname
abbreviation
dummy :: expr ("<>")
where "<> == LAcc any"
abbreviation
one :: expr
where "one == {Nat}new Nat..suc(<>)"
text {* The following properties could be derived from a more complete
program model, which we leave out for laziness. *}
axiomatization where Nat_no_subclasses [simp]: "D \<preceq>C Nat = (D=Nat)"
axiomatization where method_Nat_add [simp]: "method Nat add = Some
\<lparr> par=Class Nat, res=Class Nat, lcl=[],
bdy= If((LAcc This..pred))
(Res :== {Nat}(LAcc This..pred)..add({Nat}LAcc Par..suc(<>)))
Else Res :== LAcc Par \<rparr>"
axiomatization where method_Nat_suc [simp]: "method Nat suc = Some
\<lparr> par=NT, res=Class Nat, lcl=[],
bdy= Res :== new Nat;; LAcc Res..pred :== LAcc This \<rparr>"
axiomatization where field_Nat [simp]: "field Nat = empty(pred\<mapsto>Class Nat)"
lemma init_locs_Nat_add [simp]: "init_locs Nat add s = s"
by (simp add: init_locs_def init_vars_def)
lemma init_locs_Nat_suc [simp]: "init_locs Nat suc s = s"
by (simp add: init_locs_def init_vars_def)
lemma upd_obj_new_obj_Nat [simp]:
"upd_obj a pred v (new_obj a Nat s) = hupd(a\<mapsto>(Nat, empty(pred\<mapsto>v))) s"
by (simp add: new_obj_def init_vars_def upd_obj_def Let_def)
subsection "``atleast'' relation for interpretation of Nat ``values''"
primrec Nat_atleast :: "state \<Rightarrow> val \<Rightarrow> nat \<Rightarrow> bool" ("_:_ \<ge> _" [51, 51, 51] 50) where
"s:x\<ge>0 = (x\<noteq>Null)"
| "s:x\<ge>Suc n = (\<exists>a. x=Addr a \<and> heap s a \<noteq> None \<and> s:get_field s a pred\<ge>n)"
lemma Nat_atleast_lupd [rule_format, simp]:
"\<forall>s v::val. lupd(x\<mapsto>y) s:v \<ge> n = (s:v \<ge> n)"
apply (induct n)
by auto
lemma Nat_atleast_set_locs [rule_format, simp]:
"\<forall>s v::val. set_locs l s:v \<ge> n = (s:v \<ge> n)"
apply (induct n)
by auto
lemma Nat_atleast_del_locs [rule_format, simp]:
"\<forall>s v::val. del_locs s:v \<ge> n = (s:v \<ge> n)"
apply (induct n)
by auto
lemma Nat_atleast_NullD [rule_format]: "s:Null \<ge> n \<longrightarrow> False"
apply (induct n)
by auto
lemma Nat_atleast_pred_NullD [rule_format]:
"Null = get_field s a pred \<Longrightarrow> s:Addr a \<ge> n \<longrightarrow> n = 0"
apply (induct n)
by (auto dest: Nat_atleast_NullD)
lemma Nat_atleast_mono [rule_format]:
"\<forall>a. s:get_field s a pred \<ge> n \<longrightarrow> heap s a \<noteq> None \<longrightarrow> s:Addr a \<ge> n"
apply (induct n)
by auto
lemma Nat_atleast_newC [rule_format]:
"heap s aa = None \<Longrightarrow> \<forall>v::val. s:v \<ge> n \<longrightarrow> hupd(aa\<mapsto>obj) s:v \<ge> n"
apply (induct n)
apply auto
apply (case_tac "aa=a")
apply auto
apply (tactic "smp_tac 1 1")
apply (case_tac "aa=a")
apply auto
done
subsection "Proof(s) using the Hoare logic"
theorem add_homomorph_lb:
"{} \<turnstile> {\<lambda>s. s:s<This> \<ge> X \<and> s:s<Par> \<ge> Y} Meth(Nat,add) {\<lambda>s. s:s<Res> \<ge> X+Y}"
apply (rule hoare_ehoare.Meth) (* 1 *)
apply clarsimp
apply (rule_tac P'= "\<lambda>Z s. (s:s<This> \<ge> fst Z \<and> s:s<Par> \<ge> snd Z) \<and> D=Nat" and
Q'= "\<lambda>Z s. s:s<Res> \<ge> fst Z+snd Z" in AxSem.Conseq)
prefer 2
apply (clarsimp simp add: init_locs_def init_vars_def)
apply rule
apply (case_tac "D = Nat", simp_all, rule_tac [2] cFalse)
apply (rule_tac P = "\<lambda>Z Cm s. s:s<This> \<ge> fst Z \<and> s:s<Par> \<ge> snd Z" in AxSem.Impl1)
apply (clarsimp simp add: body_def) (* 4 *)
apply (rename_tac n m)
apply (rule_tac Q = "\<lambda>v s. (s:s<This> \<ge> n \<and> s:s<Par> \<ge> m) \<and>
(\<exists>a. s<This> = Addr a \<and> v = get_field s a pred)" in hoare_ehoare.Cond)
apply (rule hoare_ehoare.FAcc)
apply (rule eConseq1)
apply (rule hoare_ehoare.LAcc)
apply fast
apply auto
prefer 2
apply (rule hoare_ehoare.LAss)
apply (rule eConseq1)
apply (rule hoare_ehoare.LAcc)
apply (auto dest: Nat_atleast_pred_NullD)
apply (rule hoare_ehoare.LAss)
apply (rule_tac
Q = "\<lambda>v s. (\<forall>m. n = Suc m \<longrightarrow> s:v \<ge> m) \<and> s:s<Par> \<ge> m" and
R = "\<lambda>T P s. (\<forall>m. n = Suc m \<longrightarrow> s:T \<ge> m) \<and> s:P \<ge> Suc m"
in hoare_ehoare.Call) (* 13 *)
apply (rule hoare_ehoare.FAcc)
apply (rule eConseq1)
apply (rule hoare_ehoare.LAcc)
apply clarify
apply (drule sym, rotate_tac -1, frule (1) trans)
apply simp
prefer 2
apply clarsimp
apply (rule hoare_ehoare.Meth) (* 17 *)
apply clarsimp
apply (case_tac "D = Nat", simp_all, rule_tac [2] cFalse)
apply (rule AxSem.Conseq)
apply rule
apply (rule hoare_ehoare.Asm) (* 20 *)
apply (rule_tac a = "((case n of 0 \<Rightarrow> 0 | Suc m \<Rightarrow> m),m+1)" in UN_I, rule+)
apply (clarsimp split add: nat.split_asm dest!: Nat_atleast_mono)
apply rule
apply (rule hoare_ehoare.Call) (* 21 *)
apply (rule hoare_ehoare.LAcc)
apply rule
apply (rule hoare_ehoare.LAcc)
apply clarify
apply (rule hoare_ehoare.Meth) (* 24 *)
apply clarsimp
apply (case_tac "D = Nat", simp_all, rule_tac [2] cFalse)
apply (rule AxSem.Impl1)
apply (clarsimp simp add: body_def)
apply (rule hoare_ehoare.Comp) (* 26 *)
prefer 2
apply (rule hoare_ehoare.FAss)
prefer 2
apply rule
apply (rule hoare_ehoare.LAcc)
apply (rule hoare_ehoare.LAcc)
apply (rule hoare_ehoare.LAss)
apply (rule eConseq1)
apply (rule hoare_ehoare.NewC) (* 32 *)
apply (auto dest!: new_AddrD elim: Nat_atleast_newC)
done
end