removed Pure/ML-Systems/mlworks.ML Pure/ML-Systems/polyml-3.x.ML Pure/ML-Systems/smlnj-0.93.ML; added ML-Systems/polyml-time-limit.ML;
(* Title: Pure/Proof/reconstruct.ML
ID: $Id$
Author: Stefan Berghofer, TU Muenchen
License: GPL (GNU GENERAL PUBLIC LICENSE)
Reconstruction of partial proof terms.
*)
signature RECONSTRUCT =
sig
val quiet_mode : bool ref
val reconstruct_proof : Sign.sg -> term -> Proofterm.proof -> Proofterm.proof
val prop_of' : term list -> Proofterm.proof -> term
val prop_of : Proofterm.proof -> term
val expand_proof : Sign.sg -> (string * term option) list ->
Proofterm.proof -> Proofterm.proof
end;
structure Reconstruct : RECONSTRUCT =
struct
open Proofterm;
val quiet_mode = ref true;
fun message s = if !quiet_mode then () else writeln s;
fun vars_of t = rev (foldl_aterms
(fn (vs, v as Var _) => v ins vs | (vs, _) => vs) ([], t));
fun forall_intr (t, prop) =
let val (a, T) = (case t of Var ((a, _), T) => (a, T) | Free p => p)
in all T $ Abs (a, T, abstract_over (t, prop)) end;
fun forall_intr_vfs prop = foldr forall_intr
(vars_of prop @ sort (make_ord atless) (term_frees prop), prop);
fun forall_intr_prf (t, prf) =
let val (a, T) = (case t of Var ((a, _), T) => (a, T) | Free p => p)
in Abst (a, Some T, prf_abstract_over t prf) end;
fun forall_intr_vfs_prf prop prf = foldr forall_intr_prf
(vars_of prop @ sort (make_ord atless) (term_frees prop), prf);
fun merge_envs (Envir.Envir {asol=asol1, iTs=iTs1, maxidx=maxidx1})
(Envir.Envir {asol=asol2, iTs=iTs2, maxidx=maxidx2}) =
Envir.Envir {asol=Vartab.merge (op aconv) (asol1, asol2),
iTs=Vartab.merge (op =) (iTs1, iTs2),
maxidx=Int.max (maxidx1, maxidx2)};
(**** generate constraints for proof term ****)
fun mk_var env Ts T =
let val (env', v) = Envir.genvar "a" (env, rev Ts ---> T)
in (env', list_comb (v, map Bound (length Ts - 1 downto 0))) end;
fun mk_tvar (Envir.Envir {iTs, asol, maxidx}, s) =
(Envir.Envir {iTs = iTs, asol = asol, maxidx = maxidx+1},
TVar (("'t", maxidx+1), s));
fun mk_abs Ts t = foldl (fn (u, T) => Abs ("", T, u)) (t, Ts);
fun unifyT sg env T U =
let
val Envir.Envir {asol, iTs, maxidx} = env;
val (iTs', maxidx') = Type.unify (Sign.tsig_of sg) (iTs, maxidx) (T, U)
in Envir.Envir {asol=asol, iTs=iTs', maxidx=maxidx'} end
handle Type.TUNIFY => error ("Non-unifiable types:\n" ^
Sign.string_of_typ sg T ^ "\n\n" ^ Sign.string_of_typ sg U);
fun chaseT (env as Envir.Envir {iTs, ...}) (T as TVar (ixn, _)) =
(case Vartab.lookup (iTs, ixn) of None => T | Some T' => chaseT env T')
| chaseT _ T = T;
fun infer_type sg (env as Envir.Envir {maxidx, asol, iTs}) Ts vTs
(t as Const (s, T)) = if T = dummyT then (case Sign.const_type sg s of
None => error ("reconstruct_proof: No such constant: " ^ quote s)
| Some T =>
let val T' = incr_tvar (maxidx + 1) T
in (Const (s, T'), T', vTs,
Envir.Envir {maxidx = maxidx + 1, asol = asol, iTs = iTs})
end)
else (t, T, vTs, env)
| infer_type sg env Ts vTs (t as Free (s, T)) =
if T = dummyT then (case Symtab.lookup (vTs, s) of
None =>
let val (env', T) = mk_tvar (env, [])
in (Free (s, T), T, Symtab.update_new ((s, T), vTs), env') end
| Some T => (Free (s, T), T, vTs, env))
else (t, T, vTs, env)
| infer_type sg env Ts vTs (Var _) = error "reconstruct_proof: internal error"
| infer_type sg env Ts vTs (Abs (s, T, t)) =
let
val (env', T') = if T = dummyT then mk_tvar (env, []) else (env, T);
val (t', U, vTs', env'') = infer_type sg env' (T' :: Ts) vTs t
in (Abs (s, T', t'), T' --> U, vTs', env'') end
| infer_type sg env Ts vTs (t $ u) =
let
val (t', T, vTs1, env1) = infer_type sg env Ts vTs t;
val (u', U, vTs2, env2) = infer_type sg env1 Ts vTs1 u;
in (case chaseT env2 T of
Type ("fun", [U', V]) => (t' $ u', V, vTs2, unifyT sg env2 U U')
| _ =>
let val (env3, V) = mk_tvar (env2, [])
in (t' $ u', V, vTs2, unifyT sg env3 T (U --> V)) end)
end
| infer_type sg env Ts vTs (t as Bound i) = (t, nth_elem (i, Ts), vTs, env);
fun cantunify sg (t, u) = error ("Non-unifiable terms:\n" ^
Sign.string_of_term sg t ^ "\n\n" ^ Sign.string_of_term sg u);
fun decompose sg Ts (env, p as (t, u)) =
let fun rigrig (a, T) (b, U) uT ts us = if a <> b then cantunify sg p
else apsnd flat (foldl_map (decompose sg Ts) (uT env T U, ts ~~ us))
in case pairself (strip_comb o Envir.head_norm env) p of
((Const c, ts), (Const d, us)) => rigrig c d (unifyT sg) ts us
| ((Free c, ts), (Free d, us)) => rigrig c d (unifyT sg) ts us
| ((Bound i, ts), (Bound j, us)) =>
rigrig (i, dummyT) (j, dummyT) (K o K) ts us
| ((Abs (_, T, t), []), (Abs (_, U, u), [])) =>
decompose sg (T::Ts) (unifyT sg env T U, (t, u))
| ((Abs (_, T, t), []), _) =>
decompose sg (T::Ts) (env, (t, incr_boundvars 1 u $ Bound 0))
| (_, (Abs (_, T, u), [])) =>
decompose sg (T::Ts) (env, (incr_boundvars 1 t $ Bound 0, u))
| _ => (env, [(mk_abs Ts t, mk_abs Ts u)])
end;
fun make_constraints_cprf sg env cprf =
let
fun add_cnstrt Ts prop prf cs env vTs (t, u) =
let
val t' = mk_abs Ts t;
val u' = mk_abs Ts u
in
(prop, prf, cs, Pattern.unify (sg, env, [(t', u')]), vTs)
handle Pattern.Pattern =>
let val (env', cs') = decompose sg [] (env, (t', u'))
in (prop, prf, cs @ cs', env', vTs) end
| Pattern.Unif =>
cantunify sg (Envir.norm_term env t', Envir.norm_term env u')
end;
fun mk_cnstrts_atom env vTs prop opTs prf =
let
val tvars = term_tvars prop;
val tfrees = term_tfrees prop;
val (prop', fmap) = Type.varify (prop, []);
val (env', Ts) = (case opTs of
None => foldl_map mk_tvar (env, map snd tvars @ map snd tfrees)
| Some Ts => (env, Ts));
val prop'' = subst_TVars (map fst tvars @ map snd fmap ~~ Ts)
(forall_intr_vfs prop') handle LIST _ =>
error ("Wrong number of type arguments for " ^
quote (fst (get_name_tags [] prop prf)))
in (prop'', change_type (Some Ts) prf, [], env', vTs) end;
fun head_norm (prop, prf, cnstrts, env, vTs) =
(Envir.head_norm env prop, prf, cnstrts, env, vTs);
fun mk_cnstrts env _ Hs vTs (PBound i) = (nth_elem (i, Hs), PBound i, [], env, vTs)
| mk_cnstrts env Ts Hs vTs (Abst (s, opT, cprf)) =
let
val (env', T) = (case opT of
None => mk_tvar (env, []) | Some T => (env, T));
val (t, prf, cnstrts, env'', vTs') =
mk_cnstrts env' (T::Ts) (map (incr_boundvars 1) Hs) vTs cprf;
in (Const ("all", (T --> propT) --> propT) $ Abs (s, T, t), Abst (s, Some T, prf),
cnstrts, env'', vTs')
end
| mk_cnstrts env Ts Hs vTs (AbsP (s, Some t, cprf)) =
let
val (t', _, vTs', env') = infer_type sg env Ts vTs t;
val (u, prf, cnstrts, env'', vTs'') = mk_cnstrts env' Ts (t'::Hs) vTs' cprf;
in (Logic.mk_implies (t', u), AbsP (s, Some t', prf), cnstrts, env'', vTs'')
end
| mk_cnstrts env Ts Hs vTs (AbsP (s, None, cprf)) =
let
val (env', t) = mk_var env Ts propT;
val (u, prf, cnstrts, env'', vTs') = mk_cnstrts env' Ts (t::Hs) vTs cprf;
in (Logic.mk_implies (t, u), AbsP (s, Some t, prf), cnstrts, env'', vTs')
end
| mk_cnstrts env Ts Hs vTs (cprf1 %% cprf2) =
let val (u, prf2, cnstrts, env', vTs') = mk_cnstrts env Ts Hs vTs cprf2
in (case head_norm (mk_cnstrts env' Ts Hs vTs' cprf1) of
(Const ("==>", _) $ u' $ t', prf1, cnstrts', env'', vTs'') =>
add_cnstrt Ts t' (prf1 %% prf2) (cnstrts' @ cnstrts)
env'' vTs'' (u, u')
| (t, prf1, cnstrts', env'', vTs'') =>
let val (env''', v) = mk_var env'' Ts propT
in add_cnstrt Ts v (prf1 %% prf2) (cnstrts' @ cnstrts)
env''' vTs'' (t, Logic.mk_implies (u, v))
end)
end
| mk_cnstrts env Ts Hs vTs (cprf % Some t) =
let val (t', U, vTs1, env1) = infer_type sg env Ts vTs t
in (case head_norm (mk_cnstrts env1 Ts Hs vTs1 cprf) of
(Const ("all", Type ("fun", [Type ("fun", [T, _]), _])) $ f,
prf, cnstrts, env2, vTs2) =>
let val env3 = unifyT sg env2 T U
in (betapply (f, t'), prf % Some t', cnstrts, env3, vTs2)
end
| (u, prf, cnstrts, env2, vTs2) =>
let val (env3, v) = mk_var env2 Ts (U --> propT);
in
add_cnstrt Ts (v $ t') (prf % Some t') cnstrts env3 vTs2
(u, Const ("all", (U --> propT) --> propT) $ v)
end)
end
| mk_cnstrts env Ts Hs vTs (cprf % None) =
(case head_norm (mk_cnstrts env Ts Hs vTs cprf) of
(Const ("all", Type ("fun", [Type ("fun", [T, _]), _])) $ f,
prf, cnstrts, env', vTs') =>
let val (env'', t) = mk_var env' Ts T
in (betapply (f, t), prf % Some t, cnstrts, env'', vTs')
end
| (u, prf, cnstrts, env', vTs') =>
let
val (env1, T) = mk_tvar (env', []);
val (env2, v) = mk_var env1 Ts (T --> propT);
val (env3, t) = mk_var env2 Ts T
in
add_cnstrt Ts (v $ t) (prf % Some t) cnstrts env3 vTs'
(u, Const ("all", (T --> propT) --> propT) $ v)
end)
| mk_cnstrts env _ _ vTs (prf as PThm (_, _, prop, opTs)) =
mk_cnstrts_atom env vTs prop opTs prf
| mk_cnstrts env _ _ vTs (prf as PAxm (_, prop, opTs)) =
mk_cnstrts_atom env vTs prop opTs prf
| mk_cnstrts env _ _ vTs (prf as Oracle (_, prop, opTs)) =
mk_cnstrts_atom env vTs prop opTs prf
| mk_cnstrts env _ _ vTs (Hyp t) = (t, Hyp t, [], env, vTs)
| mk_cnstrts _ _ _ _ _ = error "reconstruct_proof: minimal proof object"
in mk_cnstrts env [] [] Symtab.empty cprf end;
fun add_term_ixns (is, Var (i, T)) = add_typ_ixns (i ins is, T)
| add_term_ixns (is, Free (_, T)) = add_typ_ixns (is, T)
| add_term_ixns (is, Const (_, T)) = add_typ_ixns (is, T)
| add_term_ixns (is, t1 $ t2) = add_term_ixns (add_term_ixns (is, t1), t2)
| add_term_ixns (is, Abs (_, T, t)) = add_term_ixns (add_typ_ixns (is, T), t)
| add_term_ixns (is, _) = is;
(**** update list of free variables of constraints ****)
fun upd_constrs env cs =
let
val Envir.Envir {asol, iTs, ...} = env;
val dom = Vartab.foldl (uncurry (cons o fst) o Library.swap)
(Vartab.foldl (uncurry (cons o fst) o Library.swap) ([], asol), iTs);
val vran = Vartab.foldl (add_typ_ixns o apsnd snd)
(Vartab.foldl (add_term_ixns o apsnd snd) ([], asol), iTs);
fun check_cs [] = []
| check_cs ((u, p, vs)::ps) =
let val vs' = vs \\ dom;
in if vs = vs' then (u, p, vs)::check_cs ps
else (true, p, vs' union vran)::check_cs ps
end
in check_cs cs end;
(**** solution of constraints ****)
fun solve _ [] bigenv = bigenv
| solve sg cs bigenv =
let
fun search env [] = error ("Unsolvable constraints:\n" ^
Pretty.string_of (Pretty.chunks (map (fn (_, p, _) =>
Display.pretty_flexpair (Sign.pretty_term sg) (pairself
(Envir.norm_term bigenv) p)) cs)))
| search env ((u, p as (t1, t2), vs)::ps) =
if u then
let
val tn1 = Envir.norm_term bigenv t1;
val tn2 = Envir.norm_term bigenv t2
in
if Pattern.pattern tn1 andalso Pattern.pattern tn2 then
((Pattern.unify (sg, env, [(tn1, tn2)]), ps) handle Pattern.Unif =>
cantunify sg (tn1, tn2))
else
let val (env', cs') = decompose sg [] (env, (tn1, tn2))
in if cs' = [(tn1, tn2)] then
apsnd (cons (false, (tn1, tn2), vs)) (search env ps)
else search env' (map (fn q => (true, q, vs)) cs' @ ps)
end
end
else apsnd (cons (false, p, vs)) (search env ps);
val Envir.Envir {maxidx, ...} = bigenv;
val (env, cs') = search (Envir.empty maxidx) cs;
in
solve sg (upd_constrs env cs') (merge_envs bigenv env)
end;
(**** reconstruction of proofs ****)
fun reconstruct_proof sg prop cprf =
let
val (cprf' % Some prop', thawf) = freeze_thaw_prf (cprf % Some prop);
val _ = message "Collecting constraints...";
val (t, prf, cs, env, _) = make_constraints_cprf sg
(Envir.empty (maxidx_of_proof cprf)) cprf';
val cs' = map (fn p => (true, p, op union
(pairself (map (fst o dest_Var) o term_vars) p))) (map (pairself (Envir.norm_term env)) ((t, prop')::cs));
val _ = message ("Solving remaining constraints (" ^ string_of_int (length cs') ^ ") ...");
val env' = solve sg cs' env
in
thawf (norm_proof env' prf)
end;
fun prop_of_atom prop Ts =
let val (prop', fmap) = Type.varify (prop, []);
in subst_TVars (map fst (term_tvars prop) @ map snd fmap ~~ Ts)
(forall_intr_vfs prop')
end;
val head_norm = Envir.head_norm (Envir.empty 0);
fun prop_of0 Hs (PBound i) = nth_elem (i, Hs)
| prop_of0 Hs (Abst (s, Some T, prf)) =
all T $ (Abs (s, T, prop_of0 Hs prf))
| prop_of0 Hs (AbsP (s, Some t, prf)) =
Logic.mk_implies (t, prop_of0 (t :: Hs) prf)
| prop_of0 Hs (prf % Some t) = (case head_norm (prop_of0 Hs prf) of
Const ("all", _) $ f => f $ t
| _ => error "prop_of: all expected")
| prop_of0 Hs (prf1 %% prf2) = (case head_norm (prop_of0 Hs prf1) of
Const ("==>", _) $ P $ Q => Q
| _ => error "prop_of: ==> expected")
| prop_of0 Hs (Hyp t) = t
| prop_of0 Hs (PThm (_, _, prop, Some Ts)) = prop_of_atom prop Ts
| prop_of0 Hs (PAxm (_, prop, Some Ts)) = prop_of_atom prop Ts
| prop_of0 Hs (Oracle (_, prop, Some Ts)) = prop_of_atom prop Ts
| prop_of0 _ _ = error "prop_of: partial proof object";
val prop_of' = Pattern.eta_contract oo (Envir.beta_norm oo prop_of0);
val prop_of = prop_of' [];
(**** expand and reconstruct subproofs ****)
fun expand_proof sg thms prf =
let
fun expand maxidx prfs (AbsP (s, t, prf)) =
let val (maxidx', prfs', prf') = expand maxidx prfs prf
in (maxidx', prfs', AbsP (s, t, prf')) end
| expand maxidx prfs (Abst (s, T, prf)) =
let val (maxidx', prfs', prf') = expand maxidx prfs prf
in (maxidx', prfs', Abst (s, T, prf')) end
| expand maxidx prfs (prf1 %% prf2) =
let
val (maxidx', prfs', prf1') = expand maxidx prfs prf1;
val (maxidx'', prfs'', prf2') = expand maxidx' prfs' prf2;
in (maxidx'', prfs'', prf1' %% prf2') end
| expand maxidx prfs (prf % t) =
let val (maxidx', prfs', prf') = expand maxidx prfs prf
in (maxidx', prfs', prf' % t) end
| expand maxidx prfs (prf as PThm ((a, _), cprf, prop, Some Ts)) =
if not (exists
(fn (b, None) => a = b
| (b, Some prop') => a = b andalso prop = prop') thms)
then (maxidx, prfs, prf) else
let
fun inc i =
map_proof_terms (Logic.incr_indexes ([], i)) (incr_tvar i);
val (maxidx', prf, prfs') = (case assoc (prfs, (a, prop)) of
None =>
let
val _ = message ("Reconstructing proof of " ^ a);
val _ = message (Sign.string_of_term sg prop);
val prf' = forall_intr_vfs_prf prop
(reconstruct_proof sg prop cprf);
val (maxidx', prfs', prf) = expand
(maxidx_of_proof prf') prfs prf'
in (maxidx' + maxidx + 1, inc (maxidx + 1) prf,
((a, prop), (maxidx', prf)) :: prfs')
end
| Some (maxidx', prf) => (maxidx' + maxidx + 1,
inc (maxidx + 1) prf, prfs));
val tfrees = term_tfrees prop;
val tye = map (fn ((s, j), _) => (s, maxidx + 1 + j))
(term_tvars prop) @ map (rpair ~1 o fst) tfrees ~~ Ts;
val varify = map_type_tfree (fn p as (a, S) =>
if p mem tfrees then TVar ((a, ~1), S) else TFree p)
in
(maxidx', prfs', map_proof_terms (subst_TVars tye o
map_term_types varify) (typ_subst_TVars tye o varify) prf)
end
| expand maxidx prfs prf = (maxidx, prfs, prf);
in #3 (expand (maxidx_of_proof prf) [] prf) end;
end;