rename HOL-Multivariate_Analysis to HOL-Analysis.
(* Title: HOL/Analysis/Euclidean_Space.thy
Author: Johannes Hölzl, TU München
Author: Brian Huffman, Portland State University
*)
section \<open>Finite-Dimensional Inner Product Spaces\<close>
theory Euclidean_Space
imports
L2_Norm
"~~/src/HOL/Library/Inner_Product"
"~~/src/HOL/Library/Product_Vector"
begin
subsection \<open>Type class of Euclidean spaces\<close>
class euclidean_space = real_inner +
fixes Basis :: "'a set"
assumes nonempty_Basis [simp]: "Basis \<noteq> {}"
assumes finite_Basis [simp]: "finite Basis"
assumes inner_Basis:
"\<lbrakk>u \<in> Basis; v \<in> Basis\<rbrakk> \<Longrightarrow> inner u v = (if u = v then 1 else 0)"
assumes euclidean_all_zero_iff:
"(\<forall>u\<in>Basis. inner x u = 0) \<longleftrightarrow> (x = 0)"
syntax "_type_dimension" :: "type \<Rightarrow> nat" ("(1DIM/(1'(_')))")
translations "DIM('a)" \<rightharpoonup> "CONST card (CONST Basis :: 'a set)"
typed_print_translation \<open>
[(@{const_syntax card},
fn ctxt => fn _ => fn [Const (@{const_syntax Basis}, Type (@{type_name set}, [T]))] =>
Syntax.const @{syntax_const "_type_dimension"} $ Syntax_Phases.term_of_typ ctxt T)]
\<close>
lemma (in euclidean_space) norm_Basis[simp]: "u \<in> Basis \<Longrightarrow> norm u = 1"
unfolding norm_eq_sqrt_inner by (simp add: inner_Basis)
lemma (in euclidean_space) inner_same_Basis[simp]: "u \<in> Basis \<Longrightarrow> inner u u = 1"
by (simp add: inner_Basis)
lemma (in euclidean_space) inner_not_same_Basis: "u \<in> Basis \<Longrightarrow> v \<in> Basis \<Longrightarrow> u \<noteq> v \<Longrightarrow> inner u v = 0"
by (simp add: inner_Basis)
lemma (in euclidean_space) sgn_Basis: "u \<in> Basis \<Longrightarrow> sgn u = u"
unfolding sgn_div_norm by (simp add: scaleR_one)
lemma (in euclidean_space) Basis_zero [simp]: "0 \<notin> Basis"
proof
assume "0 \<in> Basis" thus "False"
using inner_Basis [of 0 0] by simp
qed
lemma (in euclidean_space) nonzero_Basis: "u \<in> Basis \<Longrightarrow> u \<noteq> 0"
by clarsimp
lemma (in euclidean_space) SOME_Basis: "(SOME i. i \<in> Basis) \<in> Basis"
by (metis ex_in_conv nonempty_Basis someI_ex)
lemma (in euclidean_space) inner_setsum_left_Basis[simp]:
"b \<in> Basis \<Longrightarrow> inner (\<Sum>i\<in>Basis. f i *\<^sub>R i) b = f b"
by (simp add: inner_setsum_left inner_Basis if_distrib comm_monoid_add_class.setsum.If_cases)
lemma (in euclidean_space) euclidean_eqI:
assumes b: "\<And>b. b \<in> Basis \<Longrightarrow> inner x b = inner y b" shows "x = y"
proof -
from b have "\<forall>b\<in>Basis. inner (x - y) b = 0"
by (simp add: inner_diff_left)
then show "x = y"
by (simp add: euclidean_all_zero_iff)
qed
lemma (in euclidean_space) euclidean_eq_iff:
"x = y \<longleftrightarrow> (\<forall>b\<in>Basis. inner x b = inner y b)"
by (auto intro: euclidean_eqI)
lemma (in euclidean_space) euclidean_representation_setsum:
"(\<Sum>i\<in>Basis. f i *\<^sub>R i) = b \<longleftrightarrow> (\<forall>i\<in>Basis. f i = inner b i)"
by (subst euclidean_eq_iff) simp
lemma (in euclidean_space) euclidean_representation_setsum':
"b = (\<Sum>i\<in>Basis. f i *\<^sub>R i) \<longleftrightarrow> (\<forall>i\<in>Basis. f i = inner b i)"
by (auto simp add: euclidean_representation_setsum[symmetric])
lemma (in euclidean_space) euclidean_representation: "(\<Sum>b\<in>Basis. inner x b *\<^sub>R b) = x"
unfolding euclidean_representation_setsum by simp
lemma (in euclidean_space) choice_Basis_iff:
fixes P :: "'a \<Rightarrow> real \<Rightarrow> bool"
shows "(\<forall>i\<in>Basis. \<exists>x. P i x) \<longleftrightarrow> (\<exists>x. \<forall>i\<in>Basis. P i (inner x i))"
unfolding bchoice_iff
proof safe
fix f assume "\<forall>i\<in>Basis. P i (f i)"
then show "\<exists>x. \<forall>i\<in>Basis. P i (inner x i)"
by (auto intro!: exI[of _ "\<Sum>i\<in>Basis. f i *\<^sub>R i"])
qed auto
lemma (in euclidean_space) euclidean_representation_setsum_fun:
"(\<lambda>x. \<Sum>b\<in>Basis. inner (f x) b *\<^sub>R b) = f"
by (rule ext) (simp add: euclidean_representation_setsum)
lemma euclidean_isCont:
assumes "\<And>b. b \<in> Basis \<Longrightarrow> isCont (\<lambda>x. (inner (f x) b) *\<^sub>R b) x"
shows "isCont f x"
apply (subst euclidean_representation_setsum_fun [symmetric])
apply (rule isCont_setsum)
apply (blast intro: assms)
done
lemma DIM_positive: "0 < DIM('a::euclidean_space)"
by (simp add: card_gt_0_iff)
lemma DIM_ge_Suc0 [iff]: "Suc 0 \<le> card Basis"
by (meson DIM_positive Suc_leI)
lemma setsum_inner_Basis_scaleR [simp]:
fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_vector"
assumes "b \<in> Basis" shows "(\<Sum>i\<in>Basis. (inner i b) *\<^sub>R f i) = f b"
by (simp add: comm_monoid_add_class.setsum.remove [OF finite_Basis assms]
assms inner_not_same_Basis comm_monoid_add_class.setsum.neutral)
lemma setsum_inner_Basis_eq [simp]:
assumes "b \<in> Basis" shows "(\<Sum>i\<in>Basis. (inner i b) * f i) = f b"
by (simp add: comm_monoid_add_class.setsum.remove [OF finite_Basis assms]
assms inner_not_same_Basis comm_monoid_add_class.setsum.neutral)
subsection \<open>Subclass relationships\<close>
instance euclidean_space \<subseteq> perfect_space
proof
fix x :: 'a show "\<not> open {x}"
proof
assume "open {x}"
then obtain e where "0 < e" and e: "\<forall>y. dist y x < e \<longrightarrow> y = x"
unfolding open_dist by fast
define y where "y = x + scaleR (e/2) (SOME b. b \<in> Basis)"
have [simp]: "(SOME b. b \<in> Basis) \<in> Basis"
by (rule someI_ex) (auto simp: ex_in_conv)
from \<open>0 < e\<close> have "y \<noteq> x"
unfolding y_def by (auto intro!: nonzero_Basis)
from \<open>0 < e\<close> have "dist y x < e"
unfolding y_def by (simp add: dist_norm)
from \<open>y \<noteq> x\<close> and \<open>dist y x < e\<close> show "False"
using e by simp
qed
qed
subsection \<open>Class instances\<close>
subsubsection \<open>Type @{typ real}\<close>
instantiation real :: euclidean_space
begin
definition
[simp]: "Basis = {1::real}"
instance
by standard auto
end
lemma DIM_real[simp]: "DIM(real) = 1"
by simp
subsubsection \<open>Type @{typ complex}\<close>
instantiation complex :: euclidean_space
begin
definition Basis_complex_def: "Basis = {1, \<i>}"
instance
by standard (auto simp add: Basis_complex_def intro: complex_eqI split: if_split_asm)
end
lemma DIM_complex[simp]: "DIM(complex) = 2"
unfolding Basis_complex_def by simp
subsubsection \<open>Type @{typ "'a \<times> 'b"}\<close>
instantiation prod :: (euclidean_space, euclidean_space) euclidean_space
begin
definition
"Basis = (\<lambda>u. (u, 0)) ` Basis \<union> (\<lambda>v. (0, v)) ` Basis"
lemma setsum_Basis_prod_eq:
fixes f::"('a*'b)\<Rightarrow>('a*'b)"
shows "setsum f Basis = setsum (\<lambda>i. f (i, 0)) Basis + setsum (\<lambda>i. f (0, i)) Basis"
proof -
have "inj_on (\<lambda>u. (u::'a, 0::'b)) Basis" "inj_on (\<lambda>u. (0::'a, u::'b)) Basis"
by (auto intro!: inj_onI Pair_inject)
thus ?thesis
unfolding Basis_prod_def
by (subst setsum.union_disjoint) (auto simp: Basis_prod_def setsum.reindex)
qed
instance proof
show "(Basis :: ('a \<times> 'b) set) \<noteq> {}"
unfolding Basis_prod_def by simp
next
show "finite (Basis :: ('a \<times> 'b) set)"
unfolding Basis_prod_def by simp
next
fix u v :: "'a \<times> 'b"
assume "u \<in> Basis" and "v \<in> Basis"
thus "inner u v = (if u = v then 1 else 0)"
unfolding Basis_prod_def inner_prod_def
by (auto simp add: inner_Basis split: if_split_asm)
next
fix x :: "'a \<times> 'b"
show "(\<forall>u\<in>Basis. inner x u = 0) \<longleftrightarrow> x = 0"
unfolding Basis_prod_def ball_Un ball_simps
by (simp add: inner_prod_def prod_eq_iff euclidean_all_zero_iff)
qed
lemma DIM_prod[simp]: "DIM('a \<times> 'b) = DIM('a) + DIM('b)"
unfolding Basis_prod_def
by (subst card_Un_disjoint) (auto intro!: card_image arg_cong2[where f="op +"] inj_onI)
end
end