src/ZF/Inductive.ML
author paulson
Fri, 17 Jul 1998 11:13:59 +0200
changeset 5157 6e03de8ec2b4
parent 4352 7ac9f3e8a97d
child 6053 8a1059aa01f0
permissions -rw-r--r--
as in HOL

(*  Title:      ZF/Inductive.ML
    ID:         $Id$
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1993  University of Cambridge

(Co)Inductive Definitions for Zermelo-Fraenkel Set Theory

Inductive definitions use least fixedpoints with standard products and sums
Coinductive definitions use greatest fixedpoints with Quine products and sums

Sums are used only for mutual recursion;
Products are used only to derive "streamlined" induction rules for relations
*)

val iT = Ind_Syntax.iT
and oT = FOLogic.oT;

structure Lfp =
  struct
  val oper      = Const("lfp",      [iT,iT-->iT]--->iT)
  val bnd_mono  = Const("bnd_mono", [iT,iT-->iT]--->oT)
  val bnd_monoI = bnd_monoI
  val subs      = def_lfp_subset
  val Tarski    = def_lfp_Tarski
  val induct    = def_induct
  end;

structure Standard_Prod =
  struct
  val sigma     = Const("Sigma", [iT, iT-->iT]--->iT)
  val pair      = Const("Pair", [iT,iT]--->iT)
  val split_name = "split"
  val pair_iff  = Pair_iff
  val split_eq  = split
  val fsplitI   = splitI
  val fsplitD   = splitD
  val fsplitE   = splitE
  end;

structure Standard_CP = CartProd_Fun (Standard_Prod);

structure Standard_Sum =
  struct
  val sum       = Const("op +", [iT,iT]--->iT)
  val inl       = Const("Inl", iT-->iT)
  val inr       = Const("Inr", iT-->iT)
  val elim      = Const("case", [iT-->iT, iT-->iT, iT]--->iT)
  val case_inl  = case_Inl
  val case_inr  = case_Inr
  val inl_iff   = Inl_iff
  val inr_iff   = Inr_iff
  val distinct  = Inl_Inr_iff
  val distinct' = Inr_Inl_iff
  val free_SEs  = Ind_Syntax.mk_free_SEs 
            [distinct, distinct', inl_iff, inr_iff, Standard_Prod.pair_iff]
  end;


functor Ind_section_Fun (Inductive: sig include INDUCTIVE_ARG INDUCTIVE_I end) 
  : sig include INTR_ELIM INDRULE end =
let
  structure Intr_elim = 
      Intr_elim_Fun(structure Inductive=Inductive and Fp=Lfp and 
                    Pr=Standard_Prod and Su=Standard_Sum);

  structure Indrule = 
      Indrule_Fun (structure Inductive=Inductive and 
                   Pr=Standard_Prod and CP=Standard_CP and
                   Su=Standard_Sum and 
                   Intr_elim=Intr_elim)
in 
   struct 
   val thy      = Intr_elim.thy
   val defs     = Intr_elim.defs
   val bnd_mono = Intr_elim.bnd_mono
   val dom_subset = Intr_elim.dom_subset
   val intrs    = Intr_elim.intrs
   val elim     = Intr_elim.elim
   val mk_cases = Intr_elim.mk_cases
   open Indrule 
   end
end;


structure Ind = Add_inductive_def_Fun
    (structure Fp=Lfp and Pr=Standard_Prod and CP=Standard_CP
     and Su=Standard_Sum);


structure Gfp =
  struct
  val oper      = Const("gfp",      [iT,iT-->iT]--->iT)
  val bnd_mono  = Const("bnd_mono", [iT,iT-->iT]--->oT)
  val bnd_monoI = bnd_monoI
  val subs      = def_gfp_subset
  val Tarski    = def_gfp_Tarski
  val induct    = def_Collect_coinduct
  end;

structure Quine_Prod =
  struct
  val sigma     = Const("QSigma", [iT, iT-->iT]--->iT)
  val pair      = Const("QPair", [iT,iT]--->iT)
  val split_name = "qsplit"
  val pair_iff  = QPair_iff
  val split_eq  = qsplit
  val fsplitI   = qsplitI
  val fsplitD   = qsplitD
  val fsplitE   = qsplitE
  end;

structure Quine_CP = CartProd_Fun (Quine_Prod);

structure Quine_Sum =
  struct
  val sum       = Const("op <+>", [iT,iT]--->iT)
  val inl       = Const("QInl", iT-->iT)
  val inr       = Const("QInr", iT-->iT)
  val elim      = Const("qcase", [iT-->iT, iT-->iT, iT]--->iT)
  val case_inl  = qcase_QInl
  val case_inr  = qcase_QInr
  val inl_iff   = QInl_iff
  val inr_iff   = QInr_iff
  val distinct  = QInl_QInr_iff
  val distinct' = QInr_QInl_iff
  val free_SEs  = Ind_Syntax.mk_free_SEs 
            [distinct, distinct', inl_iff, inr_iff, Quine_Prod.pair_iff]
  end;


signature COINDRULE =
  sig
  val coinduct : thm
  end;


functor CoInd_section_Fun
 (Inductive: sig include INDUCTIVE_ARG INDUCTIVE_I end) 
    : sig include INTR_ELIM COINDRULE end =
let
  structure Intr_elim = 
      Intr_elim_Fun(structure Inductive=Inductive and Fp=Gfp and 
                    Pr=Quine_Prod and CP=Standard_CP and
                    Su=Quine_Sum);
in
   struct
   val thy      = Intr_elim.thy
   val defs     = Intr_elim.defs
   val bnd_mono = Intr_elim.bnd_mono
   val dom_subset = Intr_elim.dom_subset
   val intrs    = Intr_elim.intrs
   val elim     = Intr_elim.elim
   val mk_cases = Intr_elim.mk_cases
   val coinduct = Intr_elim.raw_induct
   end
end;

structure CoInd = 
    Add_inductive_def_Fun(structure Fp=Gfp and Pr=Quine_Prod and CP=Quine_CP
                          and Su=Quine_Sum);