(* Title: 92/CCL/eval
ID: $Id$
Author: Martin Coen, Cambridge University Computer Laboratory
Copyright 1992 University of Cambridge
*)
(*** Evaluation ***)
val EVal_rls = ref [trueV,falseV,pairV,lamV,caseVtrue,caseVfalse,caseVpair,caseVlam];
val eval_tac = DEPTH_SOLVE_1 (resolve_tac (!EVal_rls) 1);
fun ceval_tac rls = DEPTH_SOLVE_1 (resolve_tac (!EVal_rls@rls) 1);
val prems = goalw (the_context ()) [apply_def]
"[| f ---> lam x. b(x); b(a) ---> c |] ==> f ` a ---> c";
by (ceval_tac prems);
qed "applyV";
EVal_rls := !EVal_rls @ [applyV];
val major::prems = goalw (the_context ()) [let_def]
"[| t ---> a; f(a) ---> c |] ==> let x be t in f(x) ---> c";
by (rtac (major RS canonical) 1);
by (REPEAT (DEPTH_SOLVE_1 (resolve_tac ([major]@prems@(!EVal_rls)) 1 ORELSE
etac substitute 1)));
qed "letV";
val prems = goalw (the_context ()) [fix_def]
"f(fix(f)) ---> c ==> fix(f) ---> c";
by (rtac applyV 1);
by (rtac lamV 1);
by (resolve_tac prems 1);
qed "fixV";
val prems = goalw (the_context ()) [letrec_def]
"h(t,%y. letrec g x be h(x,g) in g(y)) ---> c ==> \
\ letrec g x be h(x,g) in g(t) ---> c";
by (REPEAT (resolve_tac (prems @ [fixV,applyV,lamV]) 1));
qed "letrecV";
EVal_rls := !EVal_rls @ [letV,letrecV,fixV];
fun mk_V_rl s = prove_goalw (the_context ()) data_defs s (fn prems => [ceval_tac prems]);
val V_rls = map mk_V_rl
["true ---> true",
"false ---> false",
"[| b--->true; t--->c |] ==> if b then t else u ---> c",
"[| b--->false; u--->c |] ==> if b then t else u ---> c",
"<a,b> ---> <a,b>",
"[| t ---> <a,b>; h(a,b) ---> c |] ==> split(t,h) ---> c",
"zero ---> zero",
"succ(n) ---> succ(n)",
"[| n ---> zero; t ---> c |] ==> ncase(n,t,u) ---> c",
"[| n ---> succ(x); u(x) ---> c |] ==> ncase(n,t,u) ---> c",
"[| n ---> zero; t ---> c |] ==> nrec(n,t,u) ---> c",
"[| n--->succ(x); u(x,nrec(x,t,u))--->c |] ==> nrec(n,t,u)--->c",
"[] ---> []",
"h$t ---> h$t",
"[| l ---> []; t ---> c |] ==> lcase(l,t,u) ---> c",
"[| l ---> x$xs; u(x,xs) ---> c |] ==> lcase(l,t,u) ---> c",
"[| l ---> []; t ---> c |] ==> lrec(l,t,u) ---> c",
"[| l--->x$xs; u(x,xs,lrec(xs,t,u))--->c |] ==> lrec(l,t,u)--->c"];
EVal_rls := !EVal_rls @ V_rls;
(* Factorial *)
val prems = goal (the_context ())
"letrec f n be ncase(n,succ(zero),%x. nrec(n,zero,%y g. nrec(f(x),g,%z h. succ(h)))) \
\ in f(succ(succ(zero))) ---> ?a";
by (ceval_tac []);
val prems = goal (the_context ())
"letrec f n be ncase(n,succ(zero),%x. nrec(n,zero,%y g. nrec(f(x),g,%z h. succ(h)))) \
\ in f(succ(succ(succ(zero)))) ---> ?a";
by (ceval_tac []);
(* Less Than Or Equal *)
fun isle x y = prove_goal (the_context ())
("letrec f p be split(p,%m n. ncase(m,true,%x. ncase(n,false,%y. f(<x,y>)))) \
\ in f(<"^x^","^y^">) ---> ?a")
(fn prems => [ceval_tac []]);
isle "succ(zero)" "succ(zero)";
isle "succ(zero)" "succ(succ(succ(succ(zero))))";
isle "succ(succ(succ(succ(succ(zero)))))" "succ(succ(succ(succ(zero))))";
(* Reverse *)
val prems = goal (the_context ())
"letrec id l be lcase(l,[],%x xs. x$id(xs)) \
\ in id(zero$succ(zero)$[]) ---> ?a";
by (ceval_tac []);
val prems = goal (the_context ())
"letrec rev l be lcase(l,[],%x xs. lrec(rev(xs),x$[],%y ys g. y$g)) \
\ in rev(zero$succ(zero)$(succ((lam x. x)`succ(zero)))$([])) ---> ?a";
by (ceval_tac []);