simplified atomize;
added inductive_rulify2 (to accomodate malformed induction rules);
(*  Title:      HOL/Lambda/Commutation.thy
    ID:         $Id$
    Author:     Tobias Nipkow
    Copyright   1995  TU Muenchen
*)
header {* Abstract commutation and confluence notions *}
theory Commutation = Main:
subsection {* Basic definitions *}
constdefs
  square :: "[('a \<times> 'a) set, ('a \<times> 'a) set, ('a \<times> 'a) set, ('a \<times> 'a) set] => bool"
  "square R S T U ==
    \<forall>x y. (x, y) \<in> R --> (\<forall>z. (x, z) \<in> S --> (\<exists>u. (y, u) \<in> T \<and> (z, u) \<in> U))"
  commute :: "[('a \<times> 'a) set, ('a \<times> 'a) set] => bool"
  "commute R S == square R S S R"
  diamond :: "('a \<times> 'a) set => bool"
  "diamond R == commute R R"
  Church_Rosser :: "('a \<times> 'a) set => bool"
  "Church_Rosser R ==
    \<forall>x y. (x, y) \<in> (R \<union> R^-1)^* --> (\<exists>z. (x, z) \<in> R^* \<and> (y, z) \<in> R^*)"
syntax
  confluent :: "('a \<times> 'a) set => bool"
translations
  "confluent R" == "diamond (R^*)"
subsection {* Basic lemmas *}
subsubsection {* square *}
lemma square_sym: "square R S T U ==> square S R U T"
  apply (unfold square_def)
  apply blast
  done
lemma square_subset:
    "[| square R S T U; T \<subseteq> T' |] ==> square R S T' U"
  apply (unfold square_def)
  apply blast
  done
lemma square_reflcl:
    "[| square R S T (R^=); S \<subseteq> T |] ==> square (R^=) S T (R^=)"
  apply (unfold square_def)
  apply blast
  done
lemma square_rtrancl:
    "square R S S T ==> square (R^*) S S (T^*)"
  apply (unfold square_def)
  apply (intro strip)
  apply (erule rtrancl_induct)
   apply blast
  apply (blast intro: rtrancl_into_rtrancl)
  done
lemma square_rtrancl_reflcl_commute:
    "square R S (S^*) (R^=) ==> commute (R^*) (S^*)"
  apply (unfold commute_def)
  apply (fastsimp dest: square_reflcl square_sym [THEN square_rtrancl]
    elim: r_into_rtrancl)
  done
subsubsection {* commute *}
lemma commute_sym: "commute R S ==> commute S R"
  apply (unfold commute_def)
  apply (blast intro: square_sym)
  done
lemma commute_rtrancl: "commute R S ==> commute (R^*) (S^*)"
  apply (unfold commute_def)
  apply (blast intro: square_rtrancl square_sym)
  done
lemma commute_Un:
    "[| commute R T; commute S T |] ==> commute (R \<union> S) T"
  apply (unfold commute_def square_def)
  apply blast
  done
subsubsection {* diamond, confluence, and union *}
lemma diamond_Un:
    "[| diamond R; diamond S; commute R S |] ==> diamond (R \<union> S)"
  apply (unfold diamond_def)
  apply (assumption | rule commute_Un commute_sym)+
  done
lemma diamond_confluent: "diamond R ==> confluent R"
  apply (unfold diamond_def)
  apply (erule commute_rtrancl)
  done
lemma square_reflcl_confluent:
    "square R R (R^=) (R^=) ==> confluent R"
  apply (unfold diamond_def)
  apply (fast intro: square_rtrancl_reflcl_commute r_into_rtrancl
    elim: square_subset)
  done
lemma confluent_Un:
    "[| confluent R; confluent S; commute (R^*) (S^*) |] ==> confluent (R \<union> S)"
  apply (rule rtrancl_Un_rtrancl [THEN subst])
  apply (blast dest: diamond_Un intro: diamond_confluent)
  done
lemma diamond_to_confluence:
    "[| diamond R; T \<subseteq> R; R \<subseteq> T^* |] ==> confluent T"
  apply (force intro: diamond_confluent
    dest: rtrancl_subset [symmetric])
  done
subsection {* Church-Rosser *}
lemma Church_Rosser_confluent: "Church_Rosser R = confluent R"
  apply (unfold square_def commute_def diamond_def Church_Rosser_def)
  apply (tactic {* safe_tac HOL_cs *})
   apply (tactic {*
     blast_tac (HOL_cs addIs
       [Un_upper2 RS rtrancl_mono RS subsetD RS rtrancl_trans,
       rtrancl_converseI, converseI, Un_upper1 RS rtrancl_mono RS subsetD]) 1 *})
  apply (erule rtrancl_induct)
   apply blast
  apply (blast del: rtrancl_refl intro: rtrancl_trans)
  done
end