src/HOL/Probability/Lebesgue_Measure.thy
author hoelzl
Thu, 13 Nov 2014 17:19:52 +0100
changeset 59000 6eb0725503fc
parent 58876 1888e3cb8048
child 59048 7dc8ac6f0895
permissions -rw-r--r--
import general theorems from AFP/Markov_Models

(*  Title:      HOL/Probability/Lebesgue_Measure.thy
    Author:     Johannes Hölzl, TU München
    Author:     Robert Himmelmann, TU München
    Author:     Jeremy Avigad
    Author:     Luke Serafin
*)

section {* Lebsegue measure *}

theory Lebesgue_Measure
  imports Finite_Product_Measure Bochner_Integration Caratheodory
begin

subsection {* Every right continuous and nondecreasing function gives rise to a measure *}

definition interval_measure :: "(real \<Rightarrow> real) \<Rightarrow> real measure" where
  "interval_measure F = extend_measure UNIV {(a, b). a \<le> b} (\<lambda>(a, b). {a <.. b}) (\<lambda>(a, b). ereal (F b - F a))"

lemma emeasure_interval_measure_Ioc:
  assumes "a \<le> b"
  assumes mono_F: "\<And>x y. x \<le> y \<Longrightarrow> F x \<le> F y"
  assumes right_cont_F : "\<And>a. continuous (at_right a) F" 
  shows "emeasure (interval_measure F) {a <.. b} = F b - F a"
proof (rule extend_measure_caratheodory_pair[OF interval_measure_def `a \<le> b`])
  show "semiring_of_sets UNIV {{a<..b} |a b :: real. a \<le> b}"
  proof (unfold_locales, safe)
    fix a b c d :: real assume *: "a \<le> b" "c \<le> d"
    then show "\<exists>C\<subseteq>{{a<..b} |a b. a \<le> b}. finite C \<and> disjoint C \<and> {a<..b} - {c<..d} = \<Union>C"
    proof cases
      let ?C = "{{a<..b}}"
      assume "b < c \<or> d \<le> a \<or> d \<le> c"
      with * have "?C \<subseteq> {{a<..b} |a b. a \<le> b} \<and> finite ?C \<and> disjoint ?C \<and> {a<..b} - {c<..d} = \<Union>?C"
        by (auto simp add: disjoint_def)
      thus ?thesis ..
    next
      let ?C = "{{a<..c}, {d<..b}}"
      assume "\<not> (b < c \<or> d \<le> a \<or> d \<le> c)"
      with * have "?C \<subseteq> {{a<..b} |a b. a \<le> b} \<and> finite ?C \<and> disjoint ?C \<and> {a<..b} - {c<..d} = \<Union>?C"
        by (auto simp add: disjoint_def Ioc_inj) (metis linear)+
      thus ?thesis ..
    qed
  qed (auto simp: Ioc_inj, metis linear)
  
next
  fix l r :: "nat \<Rightarrow> real" and a b :: real
  assume l_r[simp]: "\<And>n. l n \<le> r n" and "a \<le> b" and disj: "disjoint_family (\<lambda>n. {l n<..r n})" 
  assume lr_eq_ab: "(\<Union>i. {l i<..r i}) = {a<..b}"

  have [intro, simp]: "\<And>a b. a \<le> b \<Longrightarrow> 0 \<le> F b - F a"
    by (auto intro!: l_r mono_F simp: diff_le_iff)

  { fix S :: "nat set" assume "finite S"
    moreover note `a \<le> b`
    moreover have "\<And>i. i \<in> S \<Longrightarrow> {l i <.. r i} \<subseteq> {a <.. b}"
      unfolding lr_eq_ab[symmetric] by auto
    ultimately have "(\<Sum>i\<in>S. F (r i) - F (l i)) \<le> F b - F a"
    proof (induction S arbitrary: a rule: finite_psubset_induct)
      case (psubset S)
      show ?case
      proof cases
        assume "\<exists>i\<in>S. l i < r i"
        with `finite S` have "Min (l ` {i\<in>S. l i < r i}) \<in> l ` {i\<in>S. l i < r i}"
          by (intro Min_in) auto
        then obtain m where m: "m \<in> S" "l m < r m" "l m = Min (l ` {i\<in>S. l i < r i})"
          by fastforce

        have "(\<Sum>i\<in>S. F (r i) - F (l i)) = (F (r m) - F (l m)) + (\<Sum>i\<in>S - {m}. F (r i) - F (l i))"
          using m psubset by (intro setsum.remove) auto
        also have "(\<Sum>i\<in>S - {m}. F (r i) - F (l i)) \<le> F b - F (r m)"
        proof (intro psubset.IH)
          show "S - {m} \<subset> S"
            using `m\<in>S` by auto
          show "r m \<le> b"
            using psubset.prems(2)[OF `m\<in>S`] `l m < r m` by auto
        next
          fix i assume "i \<in> S - {m}"
          then have i: "i \<in> S" "i \<noteq> m" by auto
          { assume i': "l i < r i" "l i < r m"
            moreover with `finite S` i m have "l m \<le> l i"
              by auto
            ultimately have "{l i <.. r i} \<inter> {l m <.. r m} \<noteq> {}"
              by auto
            then have False
              using disjoint_family_onD[OF disj, of i m] i by auto }
          then have "l i \<noteq> r i \<Longrightarrow> r m \<le> l i"
            unfolding not_less[symmetric] using l_r[of i] by auto
          then show "{l i <.. r i} \<subseteq> {r m <.. b}"
            using psubset.prems(2)[OF `i\<in>S`] by auto
        qed
        also have "F (r m) - F (l m) \<le> F (r m) - F a"
          using psubset.prems(2)[OF `m \<in> S`] `l m < r m`
          by (auto simp add: Ioc_subset_iff intro!: mono_F)
        finally show ?case
          by (auto intro: add_mono)
      qed (simp add: `a \<le> b` less_le)
    qed }
  note claim1 = this

  (* second key induction: a lower bound on the measures of any finite collection of Ai's
     that cover an interval {u..v} *)

  { fix S u v and l r :: "nat \<Rightarrow> real"
    assume "finite S" "\<And>i. i\<in>S \<Longrightarrow> l i < r i" "{u..v} \<subseteq> (\<Union>i\<in>S. {l i<..< r i})"
    then have "F v - F u \<le> (\<Sum>i\<in>S. F (r i) - F (l i))"
    proof (induction arbitrary: v u rule: finite_psubset_induct)
      case (psubset S)
      show ?case
      proof cases
        assume "S = {}" then show ?case
          using psubset by (simp add: mono_F)
      next
        assume "S \<noteq> {}"
        then obtain j where "j \<in> S"
          by auto

        let ?R = "r j < u \<or> l j > v \<or> (\<exists>i\<in>S-{j}. l i \<le> l j \<and> r j \<le> r i)"
        show ?case
        proof cases
          assume "?R"
          with `j \<in> S` psubset.prems have "{u..v} \<subseteq> (\<Union>i\<in>S-{j}. {l i<..< r i})"
            apply (auto simp: subset_eq Ball_def)
            apply (metis Diff_iff less_le_trans leD linear singletonD)
            apply (metis Diff_iff less_le_trans leD linear singletonD)
            apply (metis order_trans less_le_not_le linear)
            done
          with `j \<in> S` have "F v - F u \<le> (\<Sum>i\<in>S - {j}. F (r i) - F (l i))"
            by (intro psubset) auto
          also have "\<dots> \<le> (\<Sum>i\<in>S. F (r i) - F (l i))"
            using psubset.prems
            by (intro setsum_mono2 psubset) (auto intro: less_imp_le)
          finally show ?thesis .
        next
          assume "\<not> ?R"
          then have j: "u \<le> r j" "l j \<le> v" "\<And>i. i \<in> S - {j} \<Longrightarrow> r i < r j \<or> l i > l j"
            by (auto simp: not_less)
          let ?S1 = "{i \<in> S. l i < l j}"
          let ?S2 = "{i \<in> S. r i > r j}"

          have "(\<Sum>i\<in>S. F (r i) - F (l i)) \<ge> (\<Sum>i\<in>?S1 \<union> ?S2 \<union> {j}. F (r i) - F (l i))"
            using `j \<in> S` `finite S` psubset.prems j
            by (intro setsum_mono2) (auto intro: less_imp_le)
          also have "(\<Sum>i\<in>?S1 \<union> ?S2 \<union> {j}. F (r i) - F (l i)) =
            (\<Sum>i\<in>?S1. F (r i) - F (l i)) + (\<Sum>i\<in>?S2 . F (r i) - F (l i)) + (F (r j) - F (l j))"
            using psubset(1) psubset.prems(1) j
            apply (subst setsum.union_disjoint)
            apply simp_all
            apply (subst setsum.union_disjoint)
            apply auto
            apply (metis less_le_not_le)
            done
          also (xtrans) have "(\<Sum>i\<in>?S1. F (r i) - F (l i)) \<ge> F (l j) - F u"
            using `j \<in> S` `finite S` psubset.prems j
            apply (intro psubset.IH psubset)
            apply (auto simp: subset_eq Ball_def)
            apply (metis less_le_trans not_le)
            done
          also (xtrans) have "(\<Sum>i\<in>?S2. F (r i) - F (l i)) \<ge> F v - F (r j)"
            using `j \<in> S` `finite S` psubset.prems j
            apply (intro psubset.IH psubset)
            apply (auto simp: subset_eq Ball_def)
            apply (metis le_less_trans not_le)
            done
          finally (xtrans) show ?case
            by (auto simp: add_mono)
        qed
      qed
    qed }
  note claim2 = this

  (* now prove the inequality going the other way *)

  { fix epsilon :: real assume egt0: "epsilon > 0"
    have "\<forall>i. \<exists>d. d > 0 &  F (r i + d) < F (r i) + epsilon / 2^(i+2)"
    proof 
      fix i
      note right_cont_F [of "r i"]
      thus "\<exists>d. d > 0 \<and> F (r i + d) < F (r i) + epsilon / 2^(i+2)"
        apply -
        apply (subst (asm) continuous_at_right_real_increasing)
        apply (rule mono_F, assumption)
        apply (drule_tac x = "epsilon / 2 ^ (i + 2)" in spec)
        apply (erule impE)
        using egt0 by (auto simp add: field_simps)
    qed
    then obtain delta where 
        deltai_gt0: "\<And>i. delta i > 0" and
        deltai_prop: "\<And>i. F (r i + delta i) < F (r i) + epsilon / 2^(i+2)"
      by metis
    have "\<exists>a' > a. F a' - F a < epsilon / 2"
      apply (insert right_cont_F [of a])
      apply (subst (asm) continuous_at_right_real_increasing)
      using mono_F apply force
      apply (drule_tac x = "epsilon / 2" in spec)
      using egt0 apply (auto simp add: field_simps)
      by (metis add_less_cancel_left comm_monoid_add_class.add.right_neutral 
        comm_semiring_1_class.normalizing_semiring_rules(24) mult_2 mult_2_right)
    then obtain a' where a'lea [arith]: "a' > a" and 
      a_prop: "F a' - F a < epsilon / 2"
      by auto
    def S' \<equiv> "{i. l i < r i}"
    obtain S :: "nat set" where 
      "S \<subseteq> S'" and finS: "finite S" and 
      Sprop: "{a'..b} \<subseteq> (\<Union>i \<in> S. {l i<..<r i + delta i})"
    proof (rule compactE_image)
      show "compact {a'..b}"
        by (rule compact_Icc)
      show "\<forall>i \<in> S'. open ({l i<..<r i + delta i})" by auto
      have "{a'..b} \<subseteq> {a <.. b}"
        by auto
      also have "{a <.. b} = (\<Union>i\<in>S'. {l i<..r i})"
        unfolding lr_eq_ab[symmetric] by (fastforce simp add: S'_def intro: less_le_trans)
      also have "\<dots> \<subseteq> (\<Union>i \<in> S'. {l i<..<r i + delta i})"
        apply (intro UN_mono)
        apply (auto simp: S'_def)
        apply (cut_tac i=i in deltai_gt0)
        apply simp
        done
      finally show "{a'..b} \<subseteq> (\<Union>i \<in> S'. {l i<..<r i + delta i})" .
    qed
    with S'_def have Sprop2: "\<And>i. i \<in> S \<Longrightarrow> l i < r i" by auto
    from finS have "\<exists>n. \<forall>i \<in> S. i \<le> n" 
      by (subst finite_nat_set_iff_bounded_le [symmetric])
    then obtain n where Sbound [rule_format]: "\<forall>i \<in> S. i \<le> n" ..
    have "F b - F a' \<le> (\<Sum>i\<in>S. F (r i + delta i) - F (l i))"
      apply (rule claim2 [rule_format])
      using finS Sprop apply auto
      apply (frule Sprop2)
      apply (subgoal_tac "delta i > 0")
      apply arith
      by (rule deltai_gt0)
    also have "... \<le> (SUM i : S. F(r i) - F(l i) + epsilon / 2^(i+2))"
      apply (rule setsum_mono)
      apply simp
      apply (rule order_trans)
      apply (rule less_imp_le)
      apply (rule deltai_prop)
      by auto
    also have "... = (SUM i : S. F(r i) - F(l i)) + 
        (epsilon / 4) * (SUM i : S. (1 / 2)^i)" (is "_ = ?t + _")
      by (subst setsum.distrib) (simp add: field_simps setsum_right_distrib)
    also have "... \<le> ?t + (epsilon / 4) * (\<Sum> i < Suc n. (1 / 2)^i)"
      apply (rule add_left_mono)
      apply (rule mult_left_mono)
      apply (rule setsum_mono2)
      using egt0 apply auto 
      by (frule Sbound, auto)
    also have "... \<le> ?t + (epsilon / 2)"
      apply (rule add_left_mono)
      apply (subst geometric_sum)
      apply auto
      apply (rule mult_left_mono)
      using egt0 apply auto
      done
    finally have aux2: "F b - F a' \<le> (\<Sum>i\<in>S. F (r i) - F (l i)) + epsilon / 2"
      by simp

    have "F b - F a = (F b - F a') + (F a' - F a)"
      by auto
    also have "... \<le> (F b - F a') + epsilon / 2"
      using a_prop by (intro add_left_mono) simp
    also have "... \<le> (\<Sum>i\<in>S. F (r i) - F (l i)) + epsilon / 2 + epsilon / 2"
      apply (intro add_right_mono)
      apply (rule aux2)
      done
    also have "... = (\<Sum>i\<in>S. F (r i) - F (l i)) + epsilon"
      by auto
    also have "... \<le> (\<Sum>i\<le>n. F (r i) - F (l i)) + epsilon"
      using finS Sbound Sprop by (auto intro!: add_right_mono setsum_mono3)
    finally have "ereal (F b - F a) \<le> (\<Sum>i\<le>n. ereal (F (r i) - F (l i))) + epsilon"
      by simp
    then have "ereal (F b - F a) \<le> (\<Sum>i. ereal (F (r i) - F (l i))) + (epsilon :: real)"
      apply (rule_tac order_trans)
      prefer 2
      apply (rule add_mono[where c="ereal epsilon"])
      apply (rule suminf_upper[of _ "Suc n"])
      apply (auto simp add: lessThan_Suc_atMost)
      done }
  hence "ereal (F b - F a) \<le> (\<Sum>i. ereal (F (r i) - F (l i)))"
    by (auto intro: ereal_le_epsilon2)
  moreover
  have "(\<Sum>i. ereal (F (r i) - F (l i))) \<le> ereal (F b - F a)"
    by (auto simp add: claim1 intro!: suminf_bound)
  ultimately show "(\<Sum>n. ereal (F (r n) - F (l n))) = ereal (F b - F a)"
    by simp
qed (auto simp: Ioc_inj diff_le_iff mono_F)

lemma measure_interval_measure_Ioc:
  assumes "a \<le> b"
  assumes mono_F: "\<And>x y. x \<le> y \<Longrightarrow> F x \<le> F y"
  assumes right_cont_F : "\<And>a. continuous (at_right a) F" 
  shows "measure (interval_measure F) {a <.. b} = F b - F a"
  unfolding measure_def
  apply (subst emeasure_interval_measure_Ioc)
  apply fact+
  apply simp
  done

lemma emeasure_interval_measure_Ioc_eq:
  "(\<And>x y. x \<le> y \<Longrightarrow> F x \<le> F y) \<Longrightarrow> (\<And>a. continuous (at_right a) F) \<Longrightarrow>
    emeasure (interval_measure F) {a <.. b} = (if a \<le> b then F b - F a else 0)"
  using emeasure_interval_measure_Ioc[of a b F] by auto

lemma sets_interval_measure [simp]: "sets (interval_measure F) = sets borel"
  apply (simp add: sets_extend_measure interval_measure_def borel_sigma_sets_Ioc)
  apply (rule sigma_sets_eqI)
  apply auto
  apply (case_tac "a \<le> ba")
  apply (auto intro: sigma_sets.Empty)
  done

lemma space_interval_measure [simp]: "space (interval_measure F) = UNIV"
  by (simp add: interval_measure_def space_extend_measure)

lemma emeasure_interval_measure_Icc:
  assumes "a \<le> b"
  assumes mono_F: "\<And>x y. x \<le> y \<Longrightarrow> F x \<le> F y"
  assumes cont_F : "continuous_on UNIV F" 
  shows "emeasure (interval_measure F) {a .. b} = F b - F a"
proof (rule tendsto_unique)
  { fix a b :: real assume "a \<le> b" then have "emeasure (interval_measure F) {a <.. b} = F b - F a"
      using cont_F
      by (subst emeasure_interval_measure_Ioc)
         (auto intro: mono_F continuous_within_subset simp: continuous_on_eq_continuous_within) }
  note * = this

  let ?F = "interval_measure F"
  show "((\<lambda>a. F b - F a) ---> emeasure ?F {a..b}) (at_left a)"
  proof (rule tendsto_at_left_sequentially)
    show "a - 1 < a" by simp
    fix X assume "\<And>n. X n < a" "incseq X" "X ----> a"
    with `a \<le> b` have "(\<lambda>n. emeasure ?F {X n<..b}) ----> emeasure ?F (\<Inter>n. {X n <..b})"
      apply (intro Lim_emeasure_decseq)
      apply (auto simp: decseq_def incseq_def emeasure_interval_measure_Ioc *)
      apply force
      apply (subst (asm ) *)
      apply (auto intro: less_le_trans less_imp_le)
      done
    also have "(\<Inter>n. {X n <..b}) = {a..b}"
      using `\<And>n. X n < a`
      apply auto
      apply (rule LIMSEQ_le_const2[OF `X ----> a`])
      apply (auto intro: less_imp_le)
      apply (auto intro: less_le_trans)
      done
    also have "(\<lambda>n. emeasure ?F {X n<..b}) = (\<lambda>n. F b - F (X n))"
      using `\<And>n. X n < a` `a \<le> b` by (subst *) (auto intro: less_imp_le less_le_trans)
    finally show "(\<lambda>n. F b - F (X n)) ----> emeasure ?F {a..b}" .
  qed
  show "((\<lambda>a. ereal (F b - F a)) ---> F b - F a) (at_left a)"
    using cont_F
    by (intro lim_ereal[THEN iffD2] tendsto_intros )
       (auto simp: continuous_on_def intro: tendsto_within_subset)
qed (rule trivial_limit_at_left_real)
  
lemma sigma_finite_interval_measure:
  assumes mono_F: "\<And>x y. x \<le> y \<Longrightarrow> F x \<le> F y"
  assumes right_cont_F : "\<And>a. continuous (at_right a) F" 
  shows "sigma_finite_measure (interval_measure F)"
  apply unfold_locales
  apply (intro exI[of _ "(\<lambda>(a, b). {a <.. b}) ` (\<rat> \<times> \<rat>)"])
  apply (auto intro!: Rats_no_top_le Rats_no_bot_less countable_rat simp: emeasure_interval_measure_Ioc_eq[OF assms])
  done

subsection {* Lebesgue-Borel measure *}

definition lborel :: "('a :: euclidean_space) measure" where
  "lborel = distr (\<Pi>\<^sub>M b\<in>Basis. interval_measure (\<lambda>x. x)) borel (\<lambda>f. \<Sum>b\<in>Basis. f b *\<^sub>R b)"

lemma 
  shows sets_lborel[simp]: "sets lborel = sets borel"
    and space_lborel[simp]: "space lborel = space borel"
    and measurable_lborel1[simp]: "measurable M lborel = measurable M borel"
    and measurable_lborel2[simp]: "measurable lborel M = measurable borel M"
  by (simp_all add: lborel_def)

context
begin

interpretation sigma_finite_measure "interval_measure (\<lambda>x. x)"
  by (rule sigma_finite_interval_measure) auto
interpretation finite_product_sigma_finite "\<lambda>_. interval_measure (\<lambda>x. x)" Basis
  proof qed simp

lemma lborel_eq_real: "lborel = interval_measure (\<lambda>x. x)"
  unfolding lborel_def Basis_real_def
  using distr_id[of "interval_measure (\<lambda>x. x)"]
  by (subst distr_component[symmetric])
     (simp_all add: distr_distr comp_def del: distr_id cong: distr_cong)

lemma lborel_eq: "lborel = distr (\<Pi>\<^sub>M b\<in>Basis. lborel) borel (\<lambda>f. \<Sum>b\<in>Basis. f b *\<^sub>R b)"
  by (subst lborel_def) (simp add: lborel_eq_real)

lemma nn_integral_lborel_setprod:
  assumes [measurable]: "\<And>b. b \<in> Basis \<Longrightarrow> f b \<in> borel_measurable borel"
  assumes nn[simp]: "\<And>b x. b \<in> Basis \<Longrightarrow> 0 \<le> f b x"
  shows "(\<integral>\<^sup>+x. (\<Prod>b\<in>Basis. f b (x \<bullet> b)) \<partial>lborel) = (\<Prod>b\<in>Basis. (\<integral>\<^sup>+x. f b x \<partial>lborel))"
  by (simp add: lborel_def nn_integral_distr product_nn_integral_setprod
                product_nn_integral_singleton)

lemma emeasure_lborel_Icc[simp]: 
  fixes l u :: real
  assumes [simp]: "l \<le> u"
  shows "emeasure lborel {l .. u} = u - l"
proof -
  have "((\<lambda>f. f 1) -` {l..u} \<inter> space (Pi\<^sub>M {1} (\<lambda>b. interval_measure (\<lambda>x. x)))) = {1::real} \<rightarrow>\<^sub>E {l..u}"
    by (auto simp: space_PiM)
  then show ?thesis
    by (simp add: lborel_def emeasure_distr emeasure_PiM emeasure_interval_measure_Icc continuous_on_id)
qed

lemma emeasure_lborel_Icc_eq: "emeasure lborel {l .. u} = ereal (if l \<le> u then u - l else 0)"
  by simp

lemma emeasure_lborel_cbox[simp]:
  assumes [simp]: "\<And>b. b \<in> Basis \<Longrightarrow> l \<bullet> b \<le> u \<bullet> b"
  shows "emeasure lborel (cbox l u) = (\<Prod>b\<in>Basis. (u - l) \<bullet> b)"
proof -
  have "(\<lambda>x. \<Prod>b\<in>Basis. indicator {l\<bullet>b .. u\<bullet>b} (x \<bullet> b) :: ereal) = indicator (cbox l u)"
    by (auto simp: fun_eq_iff cbox_def setprod_ereal_0 split: split_indicator)
  then have "emeasure lborel (cbox l u) = (\<integral>\<^sup>+x. (\<Prod>b\<in>Basis. indicator {l\<bullet>b .. u\<bullet>b} (x \<bullet> b)) \<partial>lborel)"
    by simp
  also have "\<dots> = (\<Prod>b\<in>Basis. (u - l) \<bullet> b)"
    by (subst nn_integral_lborel_setprod) (simp_all add: setprod_ereal inner_diff_left)
  finally show ?thesis .
qed

lemma AE_lborel_singleton: "AE x in lborel::'a::euclidean_space measure. x \<noteq> c"
  using SOME_Basis AE_discrete_difference [of "{c}" lborel]
    emeasure_lborel_cbox [of c c] by (auto simp add: cbox_sing)

lemma emeasure_lborel_Ioo[simp]:
  assumes [simp]: "l \<le> u"
  shows "emeasure lborel {l <..< u} = ereal (u - l)"
proof -
  have "emeasure lborel {l <..< u} = emeasure lborel {l .. u}"
    using AE_lborel_singleton[of u] AE_lborel_singleton[of l] by (intro emeasure_eq_AE) auto
  then show ?thesis
    by simp
qed

lemma emeasure_lborel_Ioc[simp]:
  assumes [simp]: "l \<le> u"
  shows "emeasure lborel {l <.. u} = ereal (u - l)"
proof -
  have "emeasure lborel {l <.. u} = emeasure lborel {l .. u}"
    using AE_lborel_singleton[of u] AE_lborel_singleton[of l] by (intro emeasure_eq_AE) auto
  then show ?thesis
    by simp
qed

lemma emeasure_lborel_Ico[simp]:
  assumes [simp]: "l \<le> u"
  shows "emeasure lborel {l ..< u} = ereal (u - l)"
proof -
  have "emeasure lborel {l ..< u} = emeasure lborel {l .. u}"
    using AE_lborel_singleton[of u] AE_lborel_singleton[of l] by (intro emeasure_eq_AE) auto
  then show ?thesis
    by simp
qed

lemma emeasure_lborel_box[simp]:
  assumes [simp]: "\<And>b. b \<in> Basis \<Longrightarrow> l \<bullet> b \<le> u \<bullet> b"
  shows "emeasure lborel (box l u) = (\<Prod>b\<in>Basis. (u - l) \<bullet> b)"
proof -
  have "(\<lambda>x. \<Prod>b\<in>Basis. indicator {l\<bullet>b <..< u\<bullet>b} (x \<bullet> b) :: ereal) = indicator (box l u)"
    by (auto simp: fun_eq_iff box_def setprod_ereal_0 split: split_indicator)
  then have "emeasure lborel (box l u) = (\<integral>\<^sup>+x. (\<Prod>b\<in>Basis. indicator {l\<bullet>b <..< u\<bullet>b} (x \<bullet> b)) \<partial>lborel)"
    by simp
  also have "\<dots> = (\<Prod>b\<in>Basis. (u - l) \<bullet> b)"
    by (subst nn_integral_lborel_setprod) (simp_all add: setprod_ereal inner_diff_left)
  finally show ?thesis .
qed

lemma emeasure_lborel_cbox_eq:
  "emeasure lborel (cbox l u) = (if \<forall>b\<in>Basis. l \<bullet> b \<le> u \<bullet> b then \<Prod>b\<in>Basis. (u - l) \<bullet> b else 0)"
  using box_eq_empty(2)[THEN iffD2, of u l] by (auto simp: not_le)

lemma emeasure_lborel_box_eq:
  "emeasure lborel (box l u) = (if \<forall>b\<in>Basis. l \<bullet> b \<le> u \<bullet> b then \<Prod>b\<in>Basis. (u - l) \<bullet> b else 0)"
  using box_eq_empty(1)[THEN iffD2, of u l] by (auto simp: not_le dest!: less_imp_le) force

lemma
  fixes l u :: real
  assumes [simp]: "l \<le> u"
  shows measure_lborel_Icc[simp]: "measure lborel {l .. u} = u - l"
    and measure_lborel_Ico[simp]: "measure lborel {l ..< u} = u - l"
    and measure_lborel_Ioc[simp]: "measure lborel {l <.. u} = u - l"
    and measure_lborel_Ioo[simp]: "measure lborel {l <..< u} = u - l"
  by (simp_all add: measure_def)

lemma 
  assumes [simp]: "\<And>b. b \<in> Basis \<Longrightarrow> l \<bullet> b \<le> u \<bullet> b"
  shows measure_lborel_box[simp]: "measure lborel (box l u) = (\<Prod>b\<in>Basis. (u - l) \<bullet> b)"
    and measure_lborel_cbox[simp]: "measure lborel (cbox l u) = (\<Prod>b\<in>Basis. (u - l) \<bullet> b)"
  by (simp_all add: measure_def)

lemma sigma_finite_lborel: "sigma_finite_measure lborel"
proof
  show "\<exists>A::'a set set. countable A \<and> A \<subseteq> sets lborel \<and> \<Union>A = space lborel \<and> (\<forall>a\<in>A. emeasure lborel a \<noteq> \<infinity>)"
    by (intro exI[of _ "range (\<lambda>n::nat. box (- real n *\<^sub>R One) (real n *\<^sub>R One))"])
       (auto simp: emeasure_lborel_cbox_eq UN_box_eq_UNIV)
qed

end

lemma emeasure_lborel_UNIV: "emeasure lborel (UNIV::'a::euclidean_space set) = \<infinity>"
  unfolding UN_box_eq_UNIV[symmetric]
  apply (subst SUP_emeasure_incseq[symmetric])
  apply (auto simp: incseq_def subset_box inner_add_left setprod_constant intro!: SUP_PInfty)
  apply (rule_tac x="Suc n" in exI)
  apply (rule order_trans[OF _ self_le_power])
  apply (auto simp: card_gt_0_iff real_of_nat_Suc)
  done

lemma emeasure_lborel_singleton[simp]: "emeasure lborel {x} = 0"
  using emeasure_lborel_cbox[of x x] nonempty_Basis
  by (auto simp del: emeasure_lborel_cbox nonempty_Basis simp add: cbox_sing)

lemma emeasure_lborel_countable:
  fixes A :: "'a::euclidean_space set"
  assumes "countable A"
  shows "emeasure lborel A = 0"
proof -
  have "A \<subseteq> (\<Union>i. {from_nat_into A i})" using from_nat_into_surj assms by force
  moreover have "emeasure lborel (\<Union>i. {from_nat_into A i}) = 0"
    by (rule emeasure_UN_eq_0) auto
  ultimately have "emeasure lborel A \<le> 0" using emeasure_mono
    by (metis assms bot.extremum_unique emeasure_empty image_eq_UN range_from_nat_into sets.empty_sets)
  thus ?thesis by (auto simp add: emeasure_le_0_iff)
qed

subsection {* Affine transformation on the Lebesgue-Borel *}

lemma lborel_eqI:
  fixes M :: "'a::euclidean_space measure"
  assumes emeasure_eq: "\<And>l u. (\<And>b. b \<in> Basis \<Longrightarrow> l \<bullet> b \<le> u \<bullet> b) \<Longrightarrow> emeasure M (box l u) = (\<Prod>b\<in>Basis. (u - l) \<bullet> b)"
  assumes sets_eq: "sets M = sets borel"
  shows "lborel = M"
proof (rule measure_eqI_generator_eq)
  let ?E = "range (\<lambda>(a, b). box a b::'a set)"
  show "Int_stable ?E"
    by (auto simp: Int_stable_def box_Int_box)

  show "?E \<subseteq> Pow UNIV" "sets lborel = sigma_sets UNIV ?E" "sets M = sigma_sets UNIV ?E"
    by (simp_all add: borel_eq_box sets_eq)

  let ?A = "\<lambda>n::nat. box (- (real n *\<^sub>R One)) (real n *\<^sub>R One) :: 'a set"
  show "range ?A \<subseteq> ?E" "(\<Union>i. ?A i) = UNIV"
    unfolding UN_box_eq_UNIV by auto

  { fix i show "emeasure lborel (?A i) \<noteq> \<infinity>" by auto }
  { fix X assume "X \<in> ?E" then show "emeasure lborel X = emeasure M X"
      apply (auto simp: emeasure_eq emeasure_lborel_box_eq )
      apply (subst box_eq_empty(1)[THEN iffD2])
      apply (auto intro: less_imp_le simp: not_le)
      done }
qed

lemma lborel_affine:
  fixes t :: "'a::euclidean_space" assumes "c \<noteq> 0"
  shows "lborel = density (distr lborel borel (\<lambda>x. t + c *\<^sub>R x)) (\<lambda>_. \<bar>c\<bar>^DIM('a))" (is "_ = ?D")
proof (rule lborel_eqI)
  let ?B = "Basis :: 'a set"
  fix l u assume le: "\<And>b. b \<in> ?B \<Longrightarrow> l \<bullet> b \<le> u \<bullet> b"
  show "emeasure ?D (box l u) = (\<Prod>b\<in>?B. (u - l) \<bullet> b)"
  proof cases
    assume "0 < c"
    then have "(\<lambda>x. t + c *\<^sub>R x) -` box l u = box ((l - t) /\<^sub>R c) ((u - t) /\<^sub>R c)"
      by (auto simp: field_simps box_def inner_simps)
    with `0 < c` show ?thesis
      using le
      by (auto simp: field_simps emeasure_density nn_integral_distr nn_integral_cmult
                     emeasure_lborel_box_eq inner_simps setprod_dividef setprod_constant
                     borel_measurable_indicator' emeasure_distr)
  next
    assume "\<not> 0 < c" with `c \<noteq> 0` have "c < 0" by auto
    then have "box ((u - t) /\<^sub>R c) ((l - t) /\<^sub>R c) = (\<lambda>x. t + c *\<^sub>R x) -` box l u"
      by (auto simp: field_simps box_def inner_simps)
    then have "\<And>x. indicator (box l u) (t + c *\<^sub>R x) = (indicator (box ((u - t) /\<^sub>R c) ((l - t) /\<^sub>R c)) x :: ereal)"
      by (auto split: split_indicator)
    moreover
    { have "(- c) ^ card ?B * (\<Prod>x\<in>?B. l \<bullet> x - u \<bullet> x) = 
         (-1 * c) ^ card ?B * (\<Prod>x\<in>?B. -1 * (u \<bullet> x - l \<bullet> x))"
         by simp
      also have "\<dots> = (-1 * -1)^card ?B * c ^ card ?B * (\<Prod>x\<in>?B. u \<bullet> x - l \<bullet> x)"
        unfolding setprod.distrib power_mult_distrib by (simp add: setprod_constant)
      finally have "(- c) ^ card ?B * (\<Prod>x\<in>?B. l \<bullet> x - u \<bullet> x) = c ^ card ?B * (\<Prod>b\<in>?B. u \<bullet> b - l \<bullet> b)"
        by simp }
    ultimately show ?thesis
      using `c < 0` le
      by (auto simp: field_simps emeasure_density nn_integral_distr nn_integral_cmult
                     emeasure_lborel_box_eq inner_simps setprod_dividef setprod_constant
                     borel_measurable_indicator' emeasure_distr)
  qed
qed simp

lemma lborel_real_affine:
  "c \<noteq> 0 \<Longrightarrow> lborel = density (distr lborel borel (\<lambda>x. t + c * x)) (\<lambda>_. \<bar>c\<bar>)"
  using lborel_affine[of c t] by simp

lemma AE_borel_affine: 
  fixes P :: "real \<Rightarrow> bool"
  shows "c \<noteq> 0 \<Longrightarrow> Measurable.pred borel P \<Longrightarrow> AE x in lborel. P x \<Longrightarrow> AE x in lborel. P (t + c * x)"
  by (subst lborel_real_affine[where t="- t / c" and c="1 / c"])
     (simp_all add: AE_density AE_distr_iff field_simps)

lemma nn_integral_real_affine:
  fixes c :: real assumes [measurable]: "f \<in> borel_measurable borel" and c: "c \<noteq> 0"
  shows "(\<integral>\<^sup>+x. f x \<partial>lborel) = \<bar>c\<bar> * (\<integral>\<^sup>+x. f (t + c * x) \<partial>lborel)"
  by (subst lborel_real_affine[OF c, of t])
     (simp add: nn_integral_density nn_integral_distr nn_integral_cmult)

lemma lborel_integrable_real_affine:
  fixes f :: "real \<Rightarrow> 'a :: {banach, second_countable_topology}"
  assumes f: "integrable lborel f"
  shows "c \<noteq> 0 \<Longrightarrow> integrable lborel (\<lambda>x. f (t + c * x))"
  using f f[THEN borel_measurable_integrable] unfolding integrable_iff_bounded
  by (subst (asm) nn_integral_real_affine[where c=c and t=t]) auto

lemma lborel_integrable_real_affine_iff:
  fixes f :: "real \<Rightarrow> 'a :: {banach, second_countable_topology}"
  shows "c \<noteq> 0 \<Longrightarrow> integrable lborel (\<lambda>x. f (t + c * x)) \<longleftrightarrow> integrable lborel f"
  using
    lborel_integrable_real_affine[of f c t]
    lborel_integrable_real_affine[of "\<lambda>x. f (t + c * x)" "1/c" "-t/c"]
  by (auto simp add: field_simps)

lemma lborel_integral_real_affine:
  fixes f :: "real \<Rightarrow> 'a :: {banach, second_countable_topology}" and c :: real
  assumes c: "c \<noteq> 0" shows "(\<integral>x. f x \<partial> lborel) = \<bar>c\<bar> *\<^sub>R (\<integral>x. f (t + c * x) \<partial>lborel)"
proof cases
  assume f[measurable]: "integrable lborel f" then show ?thesis
    using c f f[THEN borel_measurable_integrable] f[THEN lborel_integrable_real_affine, of c t]
    by (subst lborel_real_affine[OF c, of t])
       (simp add: integral_density integral_distr)
next
  assume "\<not> integrable lborel f" with c show ?thesis
    by (simp add: lborel_integrable_real_affine_iff not_integrable_integral_eq)
qed

lemma divideR_right: 
  fixes x y :: "'a::real_normed_vector"
  shows "r \<noteq> 0 \<Longrightarrow> y = x /\<^sub>R r \<longleftrightarrow> r *\<^sub>R y = x"
  using scaleR_cancel_left[of r y "x /\<^sub>R r"] by simp

lemma lborel_has_bochner_integral_real_affine_iff:
  fixes x :: "'a :: {banach, second_countable_topology}"
  shows "c \<noteq> 0 \<Longrightarrow>
    has_bochner_integral lborel f x \<longleftrightarrow>
    has_bochner_integral lborel (\<lambda>x. f (t + c * x)) (x /\<^sub>R \<bar>c\<bar>)"
  unfolding has_bochner_integral_iff lborel_integrable_real_affine_iff
  by (simp_all add: lborel_integral_real_affine[symmetric] divideR_right cong: conj_cong)

interpretation lborel!: sigma_finite_measure lborel
  by (rule sigma_finite_lborel)

interpretation lborel_pair: pair_sigma_finite lborel lborel ..

(* FIXME: conversion in measurable prover *)
lemma lborelD_Collect[measurable (raw)]: "{x\<in>space borel. P x} \<in> sets borel \<Longrightarrow> {x\<in>space lborel. P x} \<in> sets lborel" by simp
lemma lborelD[measurable (raw)]: "A \<in> sets borel \<Longrightarrow> A \<in> sets lborel" by simp

subsection {* Equivalence Lebesgue integral on @{const lborel} and HK-integral *}

lemma has_integral_measure_lborel:
  fixes A :: "'a::euclidean_space set"
  assumes A[measurable]: "A \<in> sets borel" and finite: "emeasure lborel A < \<infinity>"
  shows "((\<lambda>x. 1) has_integral measure lborel A) A"
proof -
  { fix l u :: 'a
    have "((\<lambda>x. 1) has_integral measure lborel (box l u)) (box l u)"
    proof cases
      assume "\<forall>b\<in>Basis. l \<bullet> b \<le> u \<bullet> b"
      then show ?thesis
        apply simp
        apply (subst has_integral_restrict[symmetric, OF box_subset_cbox])
        apply (subst has_integral_spike_interior_eq[where g="\<lambda>_. 1"])
        using has_integral_const[of "1::real" l u]
        apply (simp_all add: inner_diff_left[symmetric] content_cbox_cases)
        done
    next
      assume "\<not> (\<forall>b\<in>Basis. l \<bullet> b \<le> u \<bullet> b)"
      then have "box l u = {}"
        unfolding box_eq_empty by (auto simp: not_le intro: less_imp_le)
      then show ?thesis
        by simp
    qed }
  note has_integral_box = this

  { fix a b :: 'a let ?M = "\<lambda>A. measure lborel (A \<inter> box a b)"
    have "Int_stable  (range (\<lambda>(a, b). box a b))"
      by (auto simp: Int_stable_def box_Int_box)
    moreover have "(range (\<lambda>(a, b). box a b)) \<subseteq> Pow UNIV"
      by auto
    moreover have "A \<in> sigma_sets UNIV (range (\<lambda>(a, b). box a b))"
       using A unfolding borel_eq_box by simp
    ultimately have "((\<lambda>x. 1) has_integral ?M A) (A \<inter> box a b)"
    proof (induction rule: sigma_sets_induct_disjoint)
      case (basic A) then show ?case
        by (auto simp: box_Int_box has_integral_box)
    next
      case empty then show ?case
        by simp
    next
      case (compl A)
      then have [measurable]: "A \<in> sets borel"
        by (simp add: borel_eq_box)

      have "((\<lambda>x. 1) has_integral ?M (box a b)) (box a b)"
        by (simp add: has_integral_box)
      moreover have "((\<lambda>x. if x \<in> A \<inter> box a b then 1 else 0) has_integral ?M A) (box a b)"
        by (subst has_integral_restrict) (auto intro: compl)
      ultimately have "((\<lambda>x. 1 - (if x \<in> A \<inter> box a b then 1 else 0)) has_integral ?M (box a b) - ?M A) (box a b)"
        by (rule has_integral_sub)
      then have "((\<lambda>x. (if x \<in> (UNIV - A) \<inter> box a b then 1 else 0)) has_integral ?M (box a b) - ?M A) (box a b)"
        by (rule has_integral_eq_eq[THEN iffD1, rotated 1]) auto
      then have "((\<lambda>x. 1) has_integral ?M (box a b) - ?M A) ((UNIV - A) \<inter> box a b)"
        by (subst (asm) has_integral_restrict) auto
      also have "?M (box a b) - ?M A = ?M (UNIV - A)"
        by (subst measure_Diff[symmetric]) (auto simp: emeasure_lborel_box_eq Diff_Int_distrib2)
      finally show ?case .
    next
      case (union F)
      then have [measurable]: "\<And>i. F i \<in> sets borel"
        by (simp add: borel_eq_box subset_eq)
      have "((\<lambda>x. if x \<in> UNION UNIV F \<inter> box a b then 1 else 0) has_integral ?M (\<Union>i. F i)) (box a b)"
      proof (rule has_integral_monotone_convergence_increasing)
        let ?f = "\<lambda>k x. \<Sum>i<k. if x \<in> F i \<inter> box a b then 1 else 0 :: real"
        show "\<And>k. (?f k has_integral (\<Sum>i<k. ?M (F i))) (box a b)"
          using union.IH by (auto intro!: has_integral_setsum simp del: Int_iff)
        show "\<And>k x. ?f k x \<le> ?f (Suc k) x"
          by (intro setsum_mono2) auto
        from union(1) have *: "\<And>x i j. x \<in> F i \<Longrightarrow> x \<in> F j \<longleftrightarrow> j = i"
          by (auto simp add: disjoint_family_on_def)
        show "\<And>x. (\<lambda>k. ?f k x) ----> (if x \<in> UNION UNIV F \<inter> box a b then 1 else 0)"
          apply (auto simp: * setsum.If_cases Iio_Int_singleton)
          apply (rule_tac k="Suc xa" in LIMSEQ_offset)
          apply (simp add: tendsto_const)
          done
        have *: "emeasure lborel ((\<Union>x. F x) \<inter> box a b) \<le> emeasure lborel (box a b)"
          by (intro emeasure_mono) auto

        with union(1) show "(\<lambda>k. \<Sum>i<k. ?M (F i)) ----> ?M (\<Union>i. F i)"
          unfolding sums_def[symmetric] UN_extend_simps
          by (intro measure_UNION) (auto simp: disjoint_family_on_def emeasure_lborel_box_eq)
      qed
      then show ?case
        by (subst (asm) has_integral_restrict) auto
    qed }
  note * = this

  show ?thesis
  proof (rule has_integral_monotone_convergence_increasing)
    let ?B = "\<lambda>n::nat. box (- real n *\<^sub>R One) (real n *\<^sub>R One) :: 'a set"
    let ?f = "\<lambda>n::nat. \<lambda>x. if x \<in> A \<inter> ?B n then 1 else 0 :: real"
    let ?M = "\<lambda>n. measure lborel (A \<inter> ?B n)"

    show "\<And>n::nat. (?f n has_integral ?M n) A"
      using * by (subst has_integral_restrict) simp_all
    show "\<And>k x. ?f k x \<le> ?f (Suc k) x"
      by (auto simp: box_def)
    { fix x assume "x \<in> A"
      moreover have "(\<lambda>k. indicator (A \<inter> ?B k) x :: real) ----> indicator (\<Union>k::nat. A \<inter> ?B k) x"
        by (intro LIMSEQ_indicator_incseq) (auto simp: incseq_def box_def)
      ultimately show "(\<lambda>k. if x \<in> A \<inter> ?B k then 1 else 0::real) ----> 1"
        by (simp add: indicator_def UN_box_eq_UNIV) }

    have "(\<lambda>n. emeasure lborel (A \<inter> ?B n)) ----> emeasure lborel (\<Union>n::nat. A \<inter> ?B n)"
      by (intro Lim_emeasure_incseq) (auto simp: incseq_def box_def)
    also have "(\<lambda>n. emeasure lborel (A \<inter> ?B n)) = (\<lambda>n. measure lborel (A \<inter> ?B n))"
    proof (intro ext emeasure_eq_ereal_measure)
      fix n have "emeasure lborel (A \<inter> ?B n) \<le> emeasure lborel (?B n)"
        by (intro emeasure_mono) auto
      then show "emeasure lborel (A \<inter> ?B n) \<noteq> \<infinity>"
        by auto
    qed
    finally show "(\<lambda>n. measure lborel (A \<inter> ?B n)) ----> measure lborel A"
      using emeasure_eq_ereal_measure[of lborel A] finite
      by (simp add: UN_box_eq_UNIV)
  qed
qed

lemma nn_integral_has_integral:
  fixes f::"'a::euclidean_space \<Rightarrow> real"
  assumes f: "f \<in> borel_measurable borel" "\<And>x. 0 \<le> f x" "(\<integral>\<^sup>+x. f x \<partial>lborel) = ereal r"
  shows "(f has_integral r) UNIV"
using f proof (induct arbitrary: r rule: borel_measurable_induct_real)
  case (set A)
  moreover then have "((\<lambda>x. 1) has_integral measure lborel A) A"
    by (intro has_integral_measure_lborel) (auto simp: ereal_indicator)
  ultimately show ?case
    by (simp add: ereal_indicator measure_def) (simp add: indicator_def)
next
  case (mult g c)
  then have "ereal c * (\<integral>\<^sup>+ x. g x \<partial>lborel) = ereal r"
    by (subst nn_integral_cmult[symmetric]) auto
  then obtain r' where "(c = 0 \<and> r = 0) \<or> ((\<integral>\<^sup>+ x. ereal (g x) \<partial>lborel) = ereal r' \<and> r = c * r')"
    by (cases "\<integral>\<^sup>+ x. ereal (g x) \<partial>lborel") (auto split: split_if_asm)
  with mult show ?case
    by (auto intro!: has_integral_cmult_real)
next
  case (add g h)
  moreover
  then have "(\<integral>\<^sup>+ x. h x + g x \<partial>lborel) = (\<integral>\<^sup>+ x. h x \<partial>lborel) + (\<integral>\<^sup>+ x. g x \<partial>lborel)"
    unfolding plus_ereal.simps[symmetric] by (subst nn_integral_add) auto
  with add obtain a b where "(\<integral>\<^sup>+ x. h x \<partial>lborel) = ereal a" "(\<integral>\<^sup>+ x. g x \<partial>lborel) = ereal b" "r = a + b"
    by (cases "\<integral>\<^sup>+ x. h x \<partial>lborel" "\<integral>\<^sup>+ x. g x \<partial>lborel" rule: ereal2_cases) auto
  ultimately show ?case
    by (auto intro!: has_integral_add)
next
  case (seq U)
  note seq(1)[measurable] and f[measurable]

  { fix i x 
    have "U i x \<le> f x"
      using seq(5)
      apply (rule LIMSEQ_le_const)
      using seq(4)
      apply (auto intro!: exI[of _ i] simp: incseq_def le_fun_def)
      done }
  note U_le_f = this
  
  { fix i
    have "(\<integral>\<^sup>+x. ereal (U i x) \<partial>lborel) \<le> (\<integral>\<^sup>+x. ereal (f x) \<partial>lborel)"
      using U_le_f by (intro nn_integral_mono) simp
    then obtain p where "(\<integral>\<^sup>+x. U i x \<partial>lborel) = ereal p" "p \<le> r"
      using seq(6) by (cases "\<integral>\<^sup>+x. U i x \<partial>lborel") auto
    moreover then have "0 \<le> p"
      by (metis ereal_less_eq(5) nn_integral_nonneg)
    moreover note seq
    ultimately have "\<exists>p. (\<integral>\<^sup>+x. U i x \<partial>lborel) = ereal p \<and> 0 \<le> p \<and> p \<le> r \<and> (U i has_integral p) UNIV"
      by auto }
  then obtain p where p: "\<And>i. (\<integral>\<^sup>+x. ereal (U i x) \<partial>lborel) = ereal (p i)"
    and bnd: "\<And>i. p i \<le> r" "\<And>i. 0 \<le> p i"
    and U_int: "\<And>i.(U i has_integral (p i)) UNIV" by metis

  have int_eq: "\<And>i. integral UNIV (U i) = p i" using U_int by (rule integral_unique)

  have *: "f integrable_on UNIV \<and> (\<lambda>k. integral UNIV (U k)) ----> integral UNIV f"
  proof (rule monotone_convergence_increasing)
    show "\<forall>k. U k integrable_on UNIV" using U_int by auto
    show "\<forall>k. \<forall>x\<in>UNIV. U k x \<le> U (Suc k) x" using `incseq U` by (auto simp: incseq_def le_fun_def)
    then show "bounded {integral UNIV (U k) |k. True}"
      using bnd int_eq by (auto simp: bounded_real intro!: exI[of _ r])
    show "\<forall>x\<in>UNIV. (\<lambda>k. U k x) ----> f x"
      using seq by auto
  qed
  moreover have "(\<lambda>i. (\<integral>\<^sup>+x. U i x \<partial>lborel)) ----> (\<integral>\<^sup>+x. f x \<partial>lborel)"
    using seq U_le_f by (intro nn_integral_dominated_convergence[where w=f]) auto
  ultimately have "integral UNIV f = r"
    by (auto simp add: int_eq p seq intro: LIMSEQ_unique)
  with * show ?case
    by (simp add: has_integral_integral)
qed

lemma nn_integral_lborel_eq_integral:
  fixes f::"'a::euclidean_space \<Rightarrow> real"
  assumes f: "f \<in> borel_measurable borel" "\<And>x. 0 \<le> f x" "(\<integral>\<^sup>+x. f x \<partial>lborel) < \<infinity>"
  shows "(\<integral>\<^sup>+x. f x \<partial>lborel) = integral UNIV f"
proof -
  from f(3) obtain r where r: "(\<integral>\<^sup>+x. f x \<partial>lborel) = ereal r"
    by (cases "\<integral>\<^sup>+x. f x \<partial>lborel") auto
  then show ?thesis
    using nn_integral_has_integral[OF f(1,2) r] by (simp add: integral_unique)
qed

lemma nn_integral_integrable_on:
  fixes f::"'a::euclidean_space \<Rightarrow> real"
  assumes f: "f \<in> borel_measurable borel" "\<And>x. 0 \<le> f x" "(\<integral>\<^sup>+x. f x \<partial>lborel) < \<infinity>"
  shows "f integrable_on UNIV"
proof -
  from f(3) obtain r where r: "(\<integral>\<^sup>+x. f x \<partial>lborel) = ereal r"
    by (cases "\<integral>\<^sup>+x. f x \<partial>lborel") auto
  then show ?thesis
    by (intro has_integral_integrable[where i=r] nn_integral_has_integral[where r=r] f)
qed

lemma nn_integral_has_integral_lborel: 
  fixes f :: "'a::euclidean_space \<Rightarrow> real"
  assumes f_borel: "f \<in> borel_measurable borel" and nonneg: "\<And>x. 0 \<le> f x"
  assumes I: "(f has_integral I) UNIV"
  shows "integral\<^sup>N lborel f = I"
proof -
  from f_borel have "(\<lambda>x. ereal (f x)) \<in> borel_measurable lborel" by auto
  from borel_measurable_implies_simple_function_sequence'[OF this] guess F . note F = this
  let ?B = "\<lambda>i::nat. box (- (real i *\<^sub>R One)) (real i *\<^sub>R One) :: 'a set"

  note F(1)[THEN borel_measurable_simple_function, measurable]

  { fix i x have "real (F i x) \<le> f x"
      using F(3,5) F(4)[of x, symmetric] nonneg
      unfolding real_le_ereal_iff
      by (auto simp: image_iff eq_commute[of \<infinity>] max_def intro: SUP_upper split: split_if_asm) }
  note F_le_f = this
  let ?F = "\<lambda>i x. F i x * indicator (?B i) x"
  have "(\<integral>\<^sup>+ x. ereal (f x) \<partial>lborel) = (SUP i. integral\<^sup>N lborel (\<lambda>x. ?F i x))"
  proof (subst nn_integral_monotone_convergence_SUP[symmetric])
    { fix x
      obtain j where j: "x \<in> ?B j"
        using UN_box_eq_UNIV by auto

      have "ereal (f x) = (SUP i. F i x)"
        using F(4)[of x] nonneg[of x] by (simp add: max_def)
      also have "\<dots> = (SUP i. ?F i x)"
      proof (rule SUP_eq)
        fix i show "\<exists>j\<in>UNIV. F i x \<le> ?F j x"
          using j F(2)
          by (intro bexI[of _ "max i j"])
             (auto split: split_max split_indicator simp: incseq_def le_fun_def box_def)
      qed (auto intro!: F split: split_indicator)
      finally have "ereal (f x) =  (SUP i. ?F i x)" . }
    then show "(\<integral>\<^sup>+ x. ereal (f x) \<partial>lborel) = (\<integral>\<^sup>+ x. (SUP i. ?F i x) \<partial>lborel)"
      by simp
  qed (insert F, auto simp: incseq_def le_fun_def box_def split: split_indicator)
  also have "\<dots> \<le> ereal I"
  proof (rule SUP_least)
    fix i :: nat
    have finite_F: "(\<integral>\<^sup>+ x. ereal (real (F i x) * indicator (?B i) x) \<partial>lborel) < \<infinity>"
    proof (rule nn_integral_bound_simple_function)
      have "emeasure lborel {x \<in> space lborel. ereal (real (F i x) * indicator (?B i) x) \<noteq> 0} \<le>
        emeasure lborel (?B i)"
        by (intro emeasure_mono)  (auto split: split_indicator)
      then show "emeasure lborel {x \<in> space lborel. ereal (real (F i x) * indicator (?B i) x) \<noteq> 0} < \<infinity>"  
        by auto
    qed (auto split: split_indicator
              intro!: real_of_ereal_pos F simple_function_compose1[where g="real"] simple_function_ereal)

    have int_F: "(\<lambda>x. real (F i x) * indicator (?B i) x) integrable_on UNIV"
      using F(5) finite_F
      by (intro nn_integral_integrable_on) (auto split: split_indicator intro: real_of_ereal_pos)
    
    have "(\<integral>\<^sup>+ x. F i x * indicator (?B i) x \<partial>lborel) = 
      (\<integral>\<^sup>+ x. ereal (real (F i x) * indicator (?B i) x) \<partial>lborel)"
      using F(3,5)
      by (intro nn_integral_cong) (auto simp: image_iff ereal_real eq_commute split: split_indicator)
    also have "\<dots> = ereal (integral UNIV (\<lambda>x. real (F i x) * indicator (?B i) x))"
      using F
      by (intro nn_integral_lborel_eq_integral[OF _ _ finite_F])
         (auto split: split_indicator intro: real_of_ereal_pos)
    also have "\<dots> \<le> ereal I"
      by (auto intro!: has_integral_le[OF integrable_integral[OF int_F] I] nonneg F_le_f
          split: split_indicator )
    finally show "(\<integral>\<^sup>+ x. F i x * indicator (?B i) x \<partial>lborel) \<le> ereal I" .
  qed
  finally have "(\<integral>\<^sup>+ x. ereal (f x) \<partial>lborel) < \<infinity>"
    by auto
  from nn_integral_lborel_eq_integral[OF assms(1,2) this] I show ?thesis
    by (simp add: integral_unique)
qed

lemma has_integral_iff_emeasure_lborel:
  fixes A :: "'a::euclidean_space set"
  assumes A[measurable]: "A \<in> sets borel"
  shows "((\<lambda>x. 1) has_integral r) A \<longleftrightarrow> emeasure lborel A = ereal r"
proof cases
  assume emeasure_A: "emeasure lborel A = \<infinity>"
  have "\<not> (\<lambda>x. 1::real) integrable_on A"
  proof
    assume int: "(\<lambda>x. 1::real) integrable_on A"
    then have "(indicator A::'a \<Rightarrow> real) integrable_on UNIV"
      unfolding indicator_def[abs_def] integrable_restrict_univ .
    then obtain r where "((indicator A::'a\<Rightarrow>real) has_integral r) UNIV"
      by auto
    from nn_integral_has_integral_lborel[OF _ _ this] emeasure_A show False
      by (simp add: ereal_indicator)
  qed
  with emeasure_A show ?thesis
    by auto
next
  assume "emeasure lborel A \<noteq> \<infinity>"
  moreover then have "((\<lambda>x. 1) has_integral measure lborel A) A"
    by (simp add: has_integral_measure_lborel)
  ultimately show ?thesis
    by (auto simp: emeasure_eq_ereal_measure has_integral_unique)
qed

lemma has_integral_integral_real:
  fixes f::"'a::euclidean_space \<Rightarrow> real"
  assumes f: "integrable lborel f"
  shows "(f has_integral (integral\<^sup>L lborel f)) UNIV"
using f proof induct
  case (base A c) then show ?case
    by (auto intro!: has_integral_mult_left simp: )
       (simp add: emeasure_eq_ereal_measure indicator_def has_integral_measure_lborel)
next
  case (add f g) then show ?case
    by (auto intro!: has_integral_add)
next
  case (lim f s)
  show ?case
  proof (rule has_integral_dominated_convergence)
    show "\<And>i. (s i has_integral integral\<^sup>L lborel (s i)) UNIV" by fact
    show "(\<lambda>x. norm (2 * f x)) integrable_on UNIV"
      using `integrable lborel f`
      by (intro nn_integral_integrable_on)
         (auto simp: integrable_iff_bounded abs_mult times_ereal.simps(1)[symmetric] nn_integral_cmult
               simp del: times_ereal.simps)
    show "\<And>k. \<forall>x\<in>UNIV. norm (s k x) \<le> norm (2 * f x)"
      using lim by (auto simp add: abs_mult)
    show "\<forall>x\<in>UNIV. (\<lambda>k. s k x) ----> f x"
      using lim by auto
    show "(\<lambda>k. integral\<^sup>L lborel (s k)) ----> integral\<^sup>L lborel f"
      using lim lim(1)[THEN borel_measurable_integrable]
      by (intro integral_dominated_convergence[where w="\<lambda>x. 2 * norm (f x)"]) auto
  qed
qed

context
  fixes f::"'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
begin

lemma has_integral_integral_lborel:
  assumes f: "integrable lborel f"
  shows "(f has_integral (integral\<^sup>L lborel f)) UNIV"
proof -
  have "((\<lambda>x. \<Sum>b\<in>Basis. (f x \<bullet> b) *\<^sub>R b) has_integral (\<Sum>b\<in>Basis. integral\<^sup>L lborel (\<lambda>x. f x \<bullet> b) *\<^sub>R b)) UNIV"
    using f by (intro has_integral_setsum finite_Basis ballI has_integral_scaleR_left has_integral_integral_real) auto
  also have eq_f: "(\<lambda>x. \<Sum>b\<in>Basis. (f x \<bullet> b) *\<^sub>R b) = f"
    by (simp add: fun_eq_iff euclidean_representation)
  also have "(\<Sum>b\<in>Basis. integral\<^sup>L lborel (\<lambda>x. f x \<bullet> b) *\<^sub>R b) = integral\<^sup>L lborel f"
    using f by (subst (2) eq_f[symmetric]) simp
  finally show ?thesis .
qed

lemma integrable_on_lborel: "integrable lborel f \<Longrightarrow> f integrable_on UNIV"
  using has_integral_integral_lborel by (auto intro: has_integral_integrable)
  
lemma integral_lborel: "integrable lborel f \<Longrightarrow> integral UNIV f = (\<integral>x. f x \<partial>lborel)"
  using has_integral_integral_lborel by auto

end

subsection {* Fundamental Theorem of Calculus for the Lebesgue integral *}

lemma emeasure_bounded_finite:
  assumes "bounded A" shows "emeasure lborel A < \<infinity>"
proof -
  from bounded_subset_cbox[OF `bounded A`] obtain a b where "A \<subseteq> cbox a b"
    by auto
  then have "emeasure lborel A \<le> emeasure lborel (cbox a b)"
    by (intro emeasure_mono) auto
  then show ?thesis
    by (auto simp: emeasure_lborel_cbox_eq)
qed

lemma emeasure_compact_finite: "compact A \<Longrightarrow> emeasure lborel A < \<infinity>"
  using emeasure_bounded_finite[of A] by (auto intro: compact_imp_bounded)

lemma borel_integrable_compact:
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::{banach, second_countable_topology}"
  assumes "compact S" "continuous_on S f"
  shows "integrable lborel (\<lambda>x. indicator S x *\<^sub>R f x)"
proof cases
  assume "S \<noteq> {}"
  have "continuous_on S (\<lambda>x. norm (f x))"
    using assms by (intro continuous_intros)
  from continuous_attains_sup[OF `compact S` `S \<noteq> {}` this]
  obtain M where M: "\<And>x. x \<in> S \<Longrightarrow> norm (f x) \<le> M"
    by auto

  show ?thesis
  proof (rule integrable_bound)
    show "integrable lborel (\<lambda>x. indicator S x * M)"
      using assms by (auto intro!: emeasure_compact_finite borel_compact integrable_mult_left)
    show "(\<lambda>x. indicator S x *\<^sub>R f x) \<in> borel_measurable lborel"
      using assms by (auto intro!: borel_measurable_continuous_on_indicator borel_compact)
    show "AE x in lborel. norm (indicator S x *\<^sub>R f x) \<le> norm (indicator S x * M)"
      by (auto split: split_indicator simp: abs_real_def dest!: M)
  qed
qed simp

lemma borel_integrable_atLeastAtMost:
  fixes f :: "real \<Rightarrow> real"
  assumes f: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> isCont f x"
  shows "integrable lborel (\<lambda>x. f x * indicator {a .. b} x)" (is "integrable _ ?f")
proof -
  have "integrable lborel (\<lambda>x. indicator {a .. b} x *\<^sub>R f x)"
  proof (rule borel_integrable_compact)
    from f show "continuous_on {a..b} f"
      by (auto intro: continuous_at_imp_continuous_on)
  qed simp
  then show ?thesis
    by (auto simp: mult.commute)
qed

text {*

For the positive integral we replace continuity with Borel-measurability. 

*}

lemma
  fixes f :: "real \<Rightarrow> real"
  assumes [measurable]: "f \<in> borel_measurable borel"
  assumes f: "\<And>x. x \<in> {a..b} \<Longrightarrow> DERIV F x :> f x" "\<And>x. x \<in> {a..b} \<Longrightarrow> 0 \<le> f x" and "a \<le> b"
  shows nn_integral_FTC_Icc: "(\<integral>\<^sup>+x. ereal (f x) * indicator {a .. b} x \<partial>lborel) = F b - F a" (is ?nn)
    and has_bochner_integral_FTC_Icc_nonneg:
      "has_bochner_integral lborel (\<lambda>x. f x * indicator {a .. b} x) (F b - F a)" (is ?has)
    and integral_FTC_Icc_nonneg: "(\<integral>x. f x * indicator {a .. b} x \<partial>lborel) = F b - F a" (is ?eq)
    and integrable_FTC_Icc_nonneg: "integrable lborel (\<lambda>x. f x * indicator {a .. b} x)" (is ?int)
proof -
  have *: "(\<lambda>x. f x * indicator {a..b} x) \<in> borel_measurable borel" "\<And>x. 0 \<le> f x * indicator {a..b} x"
    using f(2) by (auto split: split_indicator)
    
  have "(f has_integral F b - F a) {a..b}"
    by (intro fundamental_theorem_of_calculus)
       (auto simp: has_field_derivative_iff_has_vector_derivative[symmetric]
             intro: has_field_derivative_subset[OF f(1)] `a \<le> b`)
  then have i: "((\<lambda>x. f x * indicator {a .. b} x) has_integral F b - F a) UNIV"
    unfolding indicator_def if_distrib[where f="\<lambda>x. a * x" for a]
    by (simp cong del: if_cong del: atLeastAtMost_iff)
  then have nn: "(\<integral>\<^sup>+x. f x * indicator {a .. b} x \<partial>lborel) = F b - F a"
    by (rule nn_integral_has_integral_lborel[OF *])
  then show ?has
    by (rule has_bochner_integral_nn_integral[rotated 2]) (simp_all add: *)
  then show ?eq ?int
    unfolding has_bochner_integral_iff by auto
  from nn show ?nn
    by (simp add: ereal_mult_indicator)
qed

lemma
  fixes f :: "real \<Rightarrow> 'a :: euclidean_space"
  assumes "a \<le> b"
  assumes "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> (F has_vector_derivative f x) (at x within {a .. b})"
  assumes cont: "continuous_on {a .. b} f"
  shows has_bochner_integral_FTC_Icc:
      "has_bochner_integral lborel (\<lambda>x. indicator {a .. b} x *\<^sub>R f x) (F b - F a)" (is ?has)
    and integral_FTC_Icc: "(\<integral>x. indicator {a .. b} x *\<^sub>R f x \<partial>lborel) = F b - F a" (is ?eq)
proof -
  let ?f = "\<lambda>x. indicator {a .. b} x *\<^sub>R f x"
  have int: "integrable lborel ?f"
    using borel_integrable_compact[OF _ cont] by auto
  have "(f has_integral F b - F a) {a..b}"
    using assms(1,2) by (intro fundamental_theorem_of_calculus) auto
  moreover 
  have "(f has_integral integral\<^sup>L lborel ?f) {a..b}"
    using has_integral_integral_lborel[OF int]
    unfolding indicator_def if_distrib[where f="\<lambda>x. x *\<^sub>R a" for a]
    by (simp cong del: if_cong del: atLeastAtMost_iff)
  ultimately show ?eq
    by (auto dest: has_integral_unique)
  then show ?has
    using int by (auto simp: has_bochner_integral_iff)
qed

lemma
  fixes f :: "real \<Rightarrow> real"
  assumes "a \<le> b"
  assumes deriv: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> DERIV F x :> f x"
  assumes cont: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> isCont f x"
  shows has_bochner_integral_FTC_Icc_real:
      "has_bochner_integral lborel (\<lambda>x. f x * indicator {a .. b} x) (F b - F a)" (is ?has)
    and integral_FTC_Icc_real: "(\<integral>x. f x * indicator {a .. b} x \<partial>lborel) = F b - F a" (is ?eq)
proof -
  have 1: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> (F has_vector_derivative f x) (at x within {a .. b})"
    unfolding has_field_derivative_iff_has_vector_derivative[symmetric]
    using deriv by (auto intro: DERIV_subset)
  have 2: "continuous_on {a .. b} f"
    using cont by (intro continuous_at_imp_continuous_on) auto
  show ?has ?eq
    using has_bochner_integral_FTC_Icc[OF `a \<le> b` 1 2] integral_FTC_Icc[OF `a \<le> b` 1 2]
    by (auto simp: mult.commute)
qed

lemma nn_integral_FTC_atLeast:
  fixes f :: "real \<Rightarrow> real"
  assumes f_borel: "f \<in> borel_measurable borel"
  assumes f: "\<And>x. a \<le> x \<Longrightarrow> DERIV F x :> f x" 
  assumes nonneg: "\<And>x. a \<le> x \<Longrightarrow> 0 \<le> f x"
  assumes lim: "(F ---> T) at_top"
  shows "(\<integral>\<^sup>+x. ereal (f x) * indicator {a ..} x \<partial>lborel) = T - F a"
proof -
  let ?f = "\<lambda>(i::nat) (x::real). ereal (f x) * indicator {a..a + real i} x"
  let ?fR = "\<lambda>x. ereal (f x) * indicator {a ..} x"
  have "\<And>x. (SUP i::nat. ?f i x) = ?fR x"
  proof (rule SUP_Lim_ereal)
    show "\<And>x. incseq (\<lambda>i. ?f i x)"
      using nonneg by (auto simp: incseq_def le_fun_def split: split_indicator)

    fix x
    from reals_Archimedean2[of "x - a"] guess n ..
    then have "eventually (\<lambda>n. ?f n x = ?fR x) sequentially"
      by (auto intro!: eventually_sequentiallyI[where c=n] split: split_indicator)
    then show "(\<lambda>n. ?f n x) ----> ?fR x"
      by (rule Lim_eventually)
  qed
  then have "integral\<^sup>N lborel ?fR = (\<integral>\<^sup>+ x. (SUP i::nat. ?f i x) \<partial>lborel)"
    by simp
  also have "\<dots> = (SUP i::nat. (\<integral>\<^sup>+ x. ?f i x \<partial>lborel))"
  proof (rule nn_integral_monotone_convergence_SUP)
    show "incseq ?f"
      using nonneg by (auto simp: incseq_def le_fun_def split: split_indicator)
    show "\<And>i. (?f i) \<in> borel_measurable lborel"
      using f_borel by auto
  qed
  also have "\<dots> = (SUP i::nat. ereal (F (a + real i) - F a))"
    by (subst nn_integral_FTC_Icc[OF f_borel f nonneg]) auto
  also have "\<dots> = T - F a"
  proof (rule SUP_Lim_ereal)
    show "incseq (\<lambda>n. ereal (F (a + real n) - F a))"
    proof (simp add: incseq_def, safe)
      fix m n :: nat assume "m \<le> n"
      with f nonneg show "F (a + real m) \<le> F (a + real n)"
        by (intro DERIV_nonneg_imp_nondecreasing[where f=F])
           (simp, metis add_increasing2 order_refl order_trans real_of_nat_ge_zero)
    qed 
    have "(\<lambda>x. F (a + real x)) ----> T"
      apply (rule filterlim_compose[OF lim filterlim_tendsto_add_at_top])
      apply (rule LIMSEQ_const_iff[THEN iffD2, OF refl])
      apply (rule filterlim_real_sequentially)
      done
    then show "(\<lambda>n. ereal (F (a + real n) - F a)) ----> ereal (T - F a)"
      unfolding lim_ereal
      by (intro tendsto_diff) auto
  qed
  finally show ?thesis .
qed

lemma integral_power:
  "a \<le> b \<Longrightarrow> (\<integral>x. x^k * indicator {a..b} x \<partial>lborel) = (b^Suc k - a^Suc k) / Suc k"
proof (subst integral_FTC_Icc_real)
  fix x show "DERIV (\<lambda>x. x^Suc k / Suc k) x :> x^k"
    by (intro derivative_eq_intros) auto
qed (auto simp: field_simps)

subsection {* Integration by parts *}

lemma integral_by_parts_integrable:
  fixes f g F G::"real \<Rightarrow> real"
  assumes "a \<le> b"
  assumes cont_f[intro]: "!!x. a \<le>x \<Longrightarrow> x\<le>b \<Longrightarrow> isCont f x"
  assumes cont_g[intro]: "!!x. a \<le>x \<Longrightarrow> x\<le>b \<Longrightarrow> isCont g x"
  assumes [intro]: "!!x. DERIV F x :> f x"
  assumes [intro]: "!!x. DERIV G x :> g x"
  shows  "integrable lborel (\<lambda>x.((F x) * (g x) + (f x) * (G x)) * indicator {a .. b} x)"
  by (auto intro!: borel_integrable_atLeastAtMost continuous_intros) (auto intro!: DERIV_isCont)

lemma integral_by_parts:
  fixes f g F G::"real \<Rightarrow> real"
  assumes [arith]: "a \<le> b"
  assumes cont_f[intro]: "!!x. a \<le>x \<Longrightarrow> x\<le>b \<Longrightarrow> isCont f x"
  assumes cont_g[intro]: "!!x. a \<le>x \<Longrightarrow> x\<le>b \<Longrightarrow> isCont g x"
  assumes [intro]: "!!x. DERIV F x :> f x"
  assumes [intro]: "!!x. DERIV G x :> g x"
  shows "(\<integral>x. (F x * g x) * indicator {a .. b} x \<partial>lborel)
            =  F b * G b - F a * G a - \<integral>x. (f x * G x) * indicator {a .. b} x \<partial>lborel" 
proof-
  have 0: "(\<integral>x. (F x * g x + f x * G x) * indicator {a .. b} x \<partial>lborel) = F b * G b - F a * G a"
    by (rule integral_FTC_Icc_real, auto intro!: derivative_eq_intros continuous_intros) 
      (auto intro!: DERIV_isCont)

  have "(\<integral>x. (F x * g x + f x * G x) * indicator {a .. b} x \<partial>lborel) =
    (\<integral>x. (F x * g x) * indicator {a .. b} x \<partial>lborel) + \<integral>x. (f x * G x) * indicator {a .. b} x \<partial>lborel"
    apply (subst integral_add[symmetric])
    apply (auto intro!: borel_integrable_atLeastAtMost continuous_intros)
    by (auto intro!: DERIV_isCont integral_cong split:split_indicator)

  thus ?thesis using 0 by auto
qed

lemma integral_by_parts':
  fixes f g F G::"real \<Rightarrow> real"
  assumes "a \<le> b"
  assumes "!!x. a \<le>x \<Longrightarrow> x\<le>b \<Longrightarrow> isCont f x"
  assumes "!!x. a \<le>x \<Longrightarrow> x\<le>b \<Longrightarrow> isCont g x"
  assumes "!!x. DERIV F x :> f x"
  assumes "!!x. DERIV G x :> g x"
  shows "(\<integral>x. indicator {a .. b} x *\<^sub>R (F x * g x) \<partial>lborel)
            =  F b * G b - F a * G a - \<integral>x. indicator {a .. b} x *\<^sub>R (f x * G x) \<partial>lborel" 
  using integral_by_parts[OF assms] by (simp add: ac_simps)

lemma has_bochner_integral_even_function:
  fixes f :: "real \<Rightarrow> 'a :: {banach, second_countable_topology}"
  assumes f: "has_bochner_integral lborel (\<lambda>x. indicator {0..} x *\<^sub>R f x) x"
  assumes even: "\<And>x. f (- x) = f x"
  shows "has_bochner_integral lborel f (2 *\<^sub>R x)"
proof -
  have indicator: "\<And>x::real. indicator {..0} (- x) = indicator {0..} x"
    by (auto split: split_indicator)
  have "has_bochner_integral lborel (\<lambda>x. indicator {.. 0} x *\<^sub>R f x) x"
    by (subst lborel_has_bochner_integral_real_affine_iff[where c="-1" and t=0])
       (auto simp: indicator even f)
  with f have "has_bochner_integral lborel (\<lambda>x. indicator {0..} x *\<^sub>R f x + indicator {.. 0} x *\<^sub>R f x) (x + x)"
    by (rule has_bochner_integral_add)
  then have "has_bochner_integral lborel f (x + x)"
    by (rule has_bochner_integral_discrete_difference[where X="{0}", THEN iffD1, rotated 4])
       (auto split: split_indicator)
  then show ?thesis
    by (simp add: scaleR_2)
qed

lemma has_bochner_integral_odd_function:
  fixes f :: "real \<Rightarrow> 'a :: {banach, second_countable_topology}"
  assumes f: "has_bochner_integral lborel (\<lambda>x. indicator {0..} x *\<^sub>R f x) x"
  assumes odd: "\<And>x. f (- x) = - f x"
  shows "has_bochner_integral lborel f 0"
proof -
  have indicator: "\<And>x::real. indicator {..0} (- x) = indicator {0..} x"
    by (auto split: split_indicator)
  have "has_bochner_integral lborel (\<lambda>x. - indicator {.. 0} x *\<^sub>R f x) x"
    by (subst lborel_has_bochner_integral_real_affine_iff[where c="-1" and t=0])
       (auto simp: indicator odd f)
  from has_bochner_integral_minus[OF this]
  have "has_bochner_integral lborel (\<lambda>x. indicator {.. 0} x *\<^sub>R f x) (- x)"
    by simp 
  with f have "has_bochner_integral lborel (\<lambda>x. indicator {0..} x *\<^sub>R f x + indicator {.. 0} x *\<^sub>R f x) (x + - x)"
    by (rule has_bochner_integral_add)
  then have "has_bochner_integral lborel f (x + - x)"
    by (rule has_bochner_integral_discrete_difference[where X="{0}", THEN iffD1, rotated 4])
       (auto split: split_indicator)
  then show ?thesis
    by simp
qed

end