(* Title: ZF/Cardinal_AC.ML
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1994 University of Cambridge
Cardinal arithmetic WITH the Axiom of Choice
These results help justify infinite-branching datatypes
*)
open Cardinal_AC;
(*** Strengthened versions of existing theorems about cardinals ***)
goal Cardinal_AC.thy "|A| eqpoll A";
by (resolve_tac [AC_well_ord RS exE] 1);
by (etac well_ord_cardinal_eqpoll 1);
qed "cardinal_eqpoll";
val cardinal_idem = cardinal_eqpoll RS cardinal_cong;
goal Cardinal_AC.thy "!!X Y. |X| = |Y| ==> X eqpoll Y";
by (resolve_tac [AC_well_ord RS exE] 1);
by (resolve_tac [AC_well_ord RS exE] 1);
by (rtac well_ord_cardinal_eqE 1);
by (REPEAT_SOME assume_tac);
qed "cardinal_eqE";
goal Cardinal_AC.thy "|X| = |Y| <-> X eqpoll Y";
by (blast_tac (!claset addIs [cardinal_cong, cardinal_eqE]) 1);
qed "cardinal_eqpoll_iff";
goal Cardinal_AC.thy
"!!A. [| |A|=|B|; |C|=|D|; A Int C = 0; B Int D = 0 |] ==> \
\ |A Un C| = |B Un D|";
by (asm_full_simp_tac (!simpset addsimps [cardinal_eqpoll_iff,
eqpoll_disjoint_Un]) 1);
qed "cardinal_disjoint_Un";
goal Cardinal_AC.thy "!!A B. A lepoll B ==> |A| le |B|";
by (resolve_tac [AC_well_ord RS exE] 1);
by (etac well_ord_lepoll_imp_Card_le 1);
by (assume_tac 1);
qed "lepoll_imp_Card_le";
goal Cardinal_AC.thy "(i |+| j) |+| k = i |+| (j |+| k)";
by (resolve_tac [AC_well_ord RS exE] 1);
by (resolve_tac [AC_well_ord RS exE] 1);
by (resolve_tac [AC_well_ord RS exE] 1);
by (rtac well_ord_cadd_assoc 1);
by (REPEAT_SOME assume_tac);
qed "cadd_assoc";
goal Cardinal_AC.thy "(i |*| j) |*| k = i |*| (j |*| k)";
by (resolve_tac [AC_well_ord RS exE] 1);
by (resolve_tac [AC_well_ord RS exE] 1);
by (resolve_tac [AC_well_ord RS exE] 1);
by (rtac well_ord_cmult_assoc 1);
by (REPEAT_SOME assume_tac);
qed "cmult_assoc";
goal Cardinal_AC.thy "(i |+| j) |*| k = (i |*| k) |+| (j |*| k)";
by (resolve_tac [AC_well_ord RS exE] 1);
by (resolve_tac [AC_well_ord RS exE] 1);
by (resolve_tac [AC_well_ord RS exE] 1);
by (rtac well_ord_cadd_cmult_distrib 1);
by (REPEAT_SOME assume_tac);
qed "cadd_cmult_distrib";
goal Cardinal_AC.thy "!!A. InfCard(|A|) ==> A*A eqpoll A";
by (resolve_tac [AC_well_ord RS exE] 1);
by (etac well_ord_InfCard_square_eq 1);
by (assume_tac 1);
qed "InfCard_square_eq";
(*** Other applications of AC ***)
goal Cardinal_AC.thy "!!A B. |A| le |B| ==> A lepoll B";
by (resolve_tac [cardinal_eqpoll RS eqpoll_sym RS eqpoll_imp_lepoll RS
lepoll_trans] 1);
by (eresolve_tac [le_imp_subset RS subset_imp_lepoll RS lepoll_trans] 1);
by (resolve_tac [cardinal_eqpoll RS eqpoll_imp_lepoll] 1);
qed "Card_le_imp_lepoll";
goal Cardinal_AC.thy "!!A K. Card(K) ==> |A| le K <-> A lepoll K";
by (eresolve_tac [Card_cardinal_eq RS subst] 1 THEN
rtac iffI 1 THEN
DEPTH_SOLVE (eresolve_tac [Card_le_imp_lepoll,lepoll_imp_Card_le] 1));
qed "le_Card_iff";
goalw Cardinal_AC.thy [surj_def] "!!f. f: surj(X,Y) ==> EX g. g: inj(Y,X)";
by (etac CollectE 1);
by (res_inst_tac [("A1", "Y"), ("B1", "%y. f-``{y}")] (AC_Pi RS exE) 1);
by (fast_tac (!claset addSEs [apply_Pair]) 1);
by (blast_tac (!claset addDs [apply_type, Pi_memberD]
addIs [apply_equality, Pi_type, f_imp_injective]) 1);
qed "surj_implies_inj";
(*Kunen's Lemma 10.20*)
goal Cardinal_AC.thy "!!f. f: surj(X,Y) ==> |Y| le |X|";
by (rtac lepoll_imp_Card_le 1);
by (eresolve_tac [surj_implies_inj RS exE] 1);
by (rewtac lepoll_def);
by (etac exI 1);
qed "surj_implies_cardinal_le";
(*Kunen's Lemma 10.21*)
goal Cardinal_AC.thy
"!!K. [| InfCard(K); ALL i:K. |X(i)| le K |] ==> |UN i:K. X(i)| le K";
by (asm_full_simp_tac (!simpset addsimps [InfCard_is_Card, le_Card_iff]) 1);
by (rtac lepoll_trans 1);
by (resolve_tac [InfCard_square_eq RS eqpoll_imp_lepoll] 2);
by (asm_simp_tac (!simpset addsimps [InfCard_is_Card, Card_cardinal_eq]) 2);
by (rewtac lepoll_def);
by (forward_tac [InfCard_is_Card RS Card_is_Ord] 1);
by (etac (AC_ball_Pi RS exE) 1);
by (rtac exI 1);
(*Lemma needed in both subgoals, for a fixed z*)
by (subgoal_tac
"ALL z: (UN i:K. X(i)). z: X(LEAST i. z:X(i)) & (LEAST i. z:X(i)) : K" 1);
by (fast_tac (!claset addSIs [Least_le RS lt_trans1 RS ltD, ltI]
addSEs [LeastI, Ord_in_Ord]) 2);
by (res_inst_tac [("c", "%z. <LEAST i. z:X(i), f ` (LEAST i. z:X(i)) ` z>"),
("d", "%<i,j>. converse(f`i) ` j")]
lam_injective 1);
(*Instantiate the lemma proved above*)
by (ALLGOALS ball_tac);
by (blast_tac (!claset addIs [inj_is_fun RS apply_type]
addDs [apply_type]) 1);
by (dtac apply_type 1);
by (etac conjunct2 1);
by (asm_simp_tac (!simpset addsimps [left_inverse]) 1);
qed "cardinal_UN_le";
(*The same again, using csucc*)
goal Cardinal_AC.thy
"!!K. [| InfCard(K); ALL i:K. |X(i)| < csucc(K) |] ==> \
\ |UN i:K. X(i)| < csucc(K)";
by (asm_full_simp_tac
(!simpset addsimps [Card_lt_csucc_iff, cardinal_UN_le,
InfCard_is_Card, Card_cardinal]) 1);
qed "cardinal_UN_lt_csucc";
(*The same again, for a union of ordinals. In use, j(i) is a bit like rank(i),
the least ordinal j such that i:Vfrom(A,j). *)
goal Cardinal_AC.thy
"!!K. [| InfCard(K); ALL i:K. j(i) < csucc(K) |] ==> \
\ (UN i:K. j(i)) < csucc(K)";
by (resolve_tac [cardinal_UN_lt_csucc RS Card_lt_imp_lt] 1);
by (assume_tac 1);
by (blast_tac (!claset addIs [Ord_cardinal_le RS lt_trans1] addEs [ltE]) 1);
by (blast_tac (!claset addSIs [Ord_UN] addEs [ltE]) 1);
by (eresolve_tac [InfCard_is_Card RS Card_is_Ord RS Card_csucc] 1);
qed "cardinal_UN_Ord_lt_csucc";
(** Main result for infinite-branching datatypes. As above, but the index
set need not be a cardinal. Surprisingly complicated proof!
**)
(*Saves checking Ord(j) below*)
goal Ordinal.thy "!!i j. [| i <= j; j<k; Ord(i) |] ==> i<k";
by (resolve_tac [subset_imp_le RS lt_trans1] 1);
by (REPEAT (eresolve_tac [asm_rl, ltE] 1));
qed "lt_subset_trans";
(*Work backwards along the injection from W into K, given that W~=0.*)
goal Perm.thy
"!!A. [| f: inj(A,B); a:A |] ==> \
\ (UN x:A. C(x)) <= (UN y:B. C(if(y: range(f), converse(f)`y, a)))";
by (rtac UN_least 1);
by (res_inst_tac [("x1", "f`x")] (UN_upper RSN (2,subset_trans)) 1);
by (eresolve_tac [inj_is_fun RS apply_type] 2 THEN assume_tac 2);
by (asm_simp_tac
(!simpset addsimps [inj_is_fun RS apply_rangeI, left_inverse]) 1);
val inj_UN_subset = result();
(*Simpler to require |W|=K; we'd have a bijection; but the theorem would
be weaker.*)
goal Cardinal_AC.thy
"!!K. [| InfCard(K); |W| le K; ALL w:W. j(w) < csucc(K) |] ==> \
\ (UN w:W. j(w)) < csucc(K)";
by (excluded_middle_tac "W=0" 1);
by (asm_simp_tac (*solve the easy 0 case*)
(!simpset addsimps [UN_0, InfCard_is_Card, Card_is_Ord RS Card_csucc,
Card_is_Ord, Ord_0_lt_csucc]) 2);
by (asm_full_simp_tac
(!simpset addsimps [InfCard_is_Card, le_Card_iff, lepoll_def]) 1);
by (safe_tac (!claset addSIs [equalityI]));
by (swap_res_tac [[inj_UN_subset, cardinal_UN_Ord_lt_csucc]
MRS lt_subset_trans] 1);
by (REPEAT (assume_tac 1));
by (blast_tac (!claset addSIs [Ord_UN] addEs [ltE]) 2);
by (asm_simp_tac (!simpset addsimps [inj_converse_fun RS apply_type]
setloop split_tac [expand_if]) 1);
qed "le_UN_Ord_lt_csucc";