src/HOL/ex/LexOrds.thy
author haftmann
Wed, 14 Feb 2007 10:06:15 +0100
changeset 22319 6f162dd72f60
parent 22309 87ec1ca65312
child 27742 df552e6027cf
permissions -rw-r--r--
cleanup

(* Title:       HOL/ex/LexOrds.thy
   ID:
   Author:      Lukas Bulwahn, TU Muenchen

Examples for functions whose termination is proven by lexicographic order.
*)
 
theory LexOrds
imports Main
begin

subsection {* Trivial examples *}

fun identity :: "nat \<Rightarrow> nat"
where
"identity n = n"

fun yaSuc :: "nat \<Rightarrow> nat"
where 
  "yaSuc 0 = 0"
  "yaSuc (Suc n) = Suc (yaSuc n)"


subsection {* Examples on natural numbers *}

fun bin :: "(nat * nat) \<Rightarrow> nat"
where
  "bin (0, 0) = 1"
  "bin (Suc n, 0) = 0"
  "bin (0, Suc m) = 0"
  "bin (Suc n, Suc m) = bin (n, m) + bin (Suc n, m)"


fun t :: "(nat * nat) \<Rightarrow> nat"
where
  "t (0,n) = 0"
  "t (n,0) = 0"
  "t (Suc n, Suc m) = (if (n mod 2 = 0) then (t (Suc n, m)) else (t (n, Suc m)))" 


fun k :: "(nat * nat) * (nat * nat) \<Rightarrow> nat"
where
  "k ((0,0),(0,0)) = 0"
  "k ((Suc z, y), (u,v)) = k((z, y), (u, v))" (* z is descending *)
  "k ((0, Suc y), (u,v)) = k((1, y), (u, v))" (* y is descending *)
  "k ((0,0), (Suc u, v)) = k((1, 1), (u, v))" (* u is descending *)
  "k ((0,0), (0, Suc v)) = k((1,1), (1,v))"   (* v is descending *)


fun gcd2 :: "nat \<Rightarrow> nat \<Rightarrow> nat"
where
  "gcd2 x 0 = x"
  "gcd2 0 y = y"
  "gcd2 (Suc x) (Suc y) = (if x < y then gcd2 (Suc x) (y - x)
                                    else gcd2 (x - y) (Suc y))"

fun ack :: "(nat * nat) \<Rightarrow> nat"
where
  "ack (0, m) = Suc m"
  "ack (Suc n, 0) = ack(n, 1)"
  "ack (Suc n, Suc m) = ack (n, ack (Suc n, m))"


fun greedy :: "nat * nat * nat * nat * nat => nat"
where
  "greedy (Suc a, Suc b, Suc c, Suc d, Suc e) =
  (if (a < 10) then greedy (Suc a, Suc b, c, d + 2, Suc e) else
  (if (a < 20) then greedy (Suc a, b, Suc c, d, Suc e) else
  (if (a < 30) then greedy (Suc a, b, Suc c, d, Suc e) else
  (if (a < 40) then greedy (Suc a, b, Suc c, d, Suc e) else
  (if (a < 50) then greedy (Suc a, b, Suc c, d, Suc e) else
  (if (a < 60) then greedy (a, Suc b, Suc c, d, Suc e) else
  (if (a < 70) then greedy (a, Suc b, Suc c, d, Suc e) else
  (if (a < 80) then greedy (a, Suc b, Suc c, d, Suc e) else
  (if (a < 90) then greedy (Suc a, Suc b, Suc c, d, e) else
  greedy (Suc a, Suc b, Suc c, d, e))))))))))"
  "greedy (a, b, c, d, e) = 0"


fun blowup :: "nat => nat => nat => nat => nat => nat => nat => nat => nat => nat"
where
  "blowup 0 0 0 0 0 0 0 0 0 = 0"
  "blowup 0 0 0 0 0 0 0 0 (Suc i) = Suc (blowup i i i i i i i i i)"
  "blowup 0 0 0 0 0 0 0 (Suc h) i = Suc (blowup h h h h h h h h i)"
  "blowup 0 0 0 0 0 0 (Suc g) h i = Suc (blowup g g g g g g g h i)"
  "blowup 0 0 0 0 0 (Suc f) g h i = Suc (blowup f f f f f f g h i)"
  "blowup 0 0 0 0 (Suc e) f g h i = Suc (blowup e e e e e f g h i)"
  "blowup 0 0 0 (Suc d) e f g h i = Suc (blowup d d d d e f g h i)"
  "blowup 0 0 (Suc c) d e f g h i = Suc (blowup c c c d e f g h i)"
  "blowup 0 (Suc b) c d e f g h i = Suc (blowup b b c d e f g h i)"
  "blowup (Suc a) b c d e f g h i = Suc (blowup a b c d e f g h i)"

  
subsection {* Simple examples with other datatypes than nat, e.g. trees and lists *}

datatype tree = Node | Branch tree tree

fun g_tree :: "tree * tree \<Rightarrow> tree"
where
  "g_tree (Node, Node) = Node"
  "g_tree (Node, Branch a b) = Branch Node (g_tree (a,b))"
  "g_tree (Branch a b, Node) = Branch (g_tree (a,Node)) b"
  "g_tree (Branch a b, Branch c d) = Branch (g_tree (a,c)) (g_tree (b,d))"


fun acklist :: "'a list * 'a list \<Rightarrow> 'a list"
where
  "acklist ([], m) = ((hd m)#m)"
|  "acklist (n#ns, []) = acklist (ns, [n])"
|  "acklist ((n#ns), (m#ms)) = acklist (ns, acklist ((n#ns), ms))"


subsection {* Examples with mutual recursion *}

fun evn od :: "nat \<Rightarrow> bool"
where
  "evn 0 = True"
| "od 0 = False"
| "evn (Suc n) = od (Suc n)"
| "od (Suc n) = evn n"


fun sizechange_f :: "'a list => 'a list => 'a list" and
sizechange_g :: "'a list => 'a list => 'a list => 'a list"
where
"sizechange_f i x = (if i=[] then x else sizechange_g (tl i) x i)"
"sizechange_g a b c = sizechange_f a (b @ c)"


fun
  prod :: "nat => nat => nat => nat" and
  eprod :: "nat => nat => nat => nat" and
  oprod :: "nat => nat => nat => nat"
where
  "prod x y z = (if y mod 2 = 0 then eprod x y z else oprod x y z)"
  "oprod x y z = eprod x (y - 1) (z+x)"
  "eprod x y z = (if y=0 then z else prod (2*x) (y div 2) z)"


fun
  pedal :: "nat => nat => nat => nat"
and
  coast :: "nat => nat => nat => nat"
where
  "pedal 0 m c = c"
| "pedal n 0 c = c"
| "pedal n m c =
     (if n < m then coast (n - 1) (m - 1) (c + m)
               else pedal (n - 1) m (c + m))"

| "coast n m c =
     (if n < m then coast n (m - 1) (c + n)
               else pedal n m (c + n))"

fun ack1 :: "nat => nat => nat"
  and ack2 :: "nat => nat => nat"
  where
  "ack1 0 m = m+1" |
  "ack1 (Suc n) m = ack2 n m" |
  "ack2 n 0 = ack1 n 1" |
  "ack2 n (Suc m) = ack1 n (ack2 n (Suc m))"


subsection {*Examples for an unprovable termination *}

text {* If termination cannot be proven, the tactic gives further information about unprovable subgoals on the arguments *}

function noterm :: "(nat * nat) \<Rightarrow> nat"
where
  "noterm (a,b) = noterm(b,a)"
by pat_completeness auto
(* termination by apply lexicographic_order*)

function term_but_no_prove :: "nat * nat \<Rightarrow> nat"
where
  "term_but_no_prove (0,0) = 1"
  "term_but_no_prove (0, Suc b) = 0"
  "term_but_no_prove (Suc a, 0) = 0"
  "term_but_no_prove (Suc a, Suc b) = term_but_no_prove (b, a)"
by pat_completeness auto
(* termination by lexicographic_order *)

text{* The tactic distinguishes between N = not provable AND F = False *}
function no_proof :: "nat \<Rightarrow> nat"
where
  "no_proof m = no_proof (Suc m)"
by pat_completeness auto
(* termination by lexicographic_order *)

end