Simplified proofs.
(* Title: HOL/Hoare/Examples.thy
ID: $Id$
Author: Norbert Galm
Copyright 1995 TUM
Various arithmetic examples.
*)
open Examples;
(*** multiplication by successive addition ***)
goal thy
"{m=0 & s=0} \
\ WHILE m ~= a DO {s = m*b} s := s+b; m := Suc(m) END\
\ {s = a*b}";
by (hoare_tac 1);
by (ALLGOALS (asm_full_simp_tac (simpset() addsimps add_ac)));
qed "multiply_by_add";
(*** Euclid's algorithm for GCD ***)
goal thy
" {0<A & 0<B & a=A & b=B} \
\ WHILE a ~= b \
\ DO {0<a & 0<b & gcd A B = gcd a b} \
\ IF a<b \
\ THEN \
\ b:=b-a \
\ ELSE \
\ a:=a-b \
\ END \
\ END \
\ {a = gcd A B}";
by (hoare_tac 1);
(*Now prove the verification conditions*)
by Safe_tac;
by (etac less_imp_diff_positive 1);
by (asm_simp_tac (simpset() addsimps [less_imp_le, gcd_diff_r]) 1);
by (asm_full_simp_tac (simpset() addsimps [not_less_iff_le, gcd_diff_l]) 2);
by (etac gcd_nnn 2);
by (full_simp_tac (simpset() addsimps [not_less_iff_le, le_eq_less_or_eq]) 1);
by (blast_tac (claset() addIs [less_imp_diff_positive]) 1);
qed "Euclid_GCD";
(*** Power by interated squaring and multiplication ***)
goal thy
" {a=A & b=B} \
\ c:=1; \
\ WHILE b~=0 \
\ DO {A^B = c * a^b} \
\ WHILE b mod 2=0 \
\ DO {A^B = c * a^b} \
\ a:=a*a; \
\ b:=b div 2 \
\ END; \
\ c:=c*a; \
\ b:=pred b \
\ END \
\ {c = A^B}";
by (hoare_tac 1);
by (res_inst_tac [("n","b")] natE 1);
by (hyp_subst_tac 1);
by (asm_full_simp_tac (simpset() addsimps [mod_less]) 1);
by (asm_simp_tac (simpset() addsimps [mult_assoc]) 1);
qed "power_by_mult";
(*** factorial ***)
goal thy
" {a=A} \
\ b:=1; \
\ WHILE a~=0 \
\ DO {fac A = b*fac a} \
\ b:=b*a; \
\ a:=a-1 \
\ END \
\ {b = fac A}";
by (hoare_tac 1);
by Safe_tac;
by (res_inst_tac [("n","a")] natE 1);
by (ALLGOALS
(asm_simp_tac
(simpset() addsimps [add_mult_distrib,add_mult_distrib2,mult_assoc])));
by (Fast_tac 1);
qed"factorial";