(* Title: Provers/classical.ML
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1992 University of Cambridge
Theorem prover for classical reasoning, including predicate calculus, set
theory, etc.
Rules must be classified as intro, elim, safe, hazardous (unsafe).
A rule is unsafe unless it can be applied blindly without harmful results.
For a rule to be safe, its premises and conclusion should be logically
equivalent. There should be no variables in the premises that are not in
the conclusion.
*)
(*higher precedence than := facilitates use of references*)
infix 4 addSIs addSEs addSDs addIs addEs addDs delrules
addSWrapper delSWrapper addWrapper delWrapper
addSbefore addSafter addbefore addafter
addD2 addE2 addSD2 addSE2;
(*should be a type abbreviation in signature CLASSICAL*)
type netpair = (int * (bool * thm)) Net.net * (int * (bool * thm)) Net.net;
type wrapper = (int -> tactic) -> (int -> tactic);
signature CLASSICAL_DATA =
sig
val make_elim : thm -> thm (* Tactic.make_elim or a classical version*)
val mp : thm (* [| P-->Q; P |] ==> Q *)
val not_elim : thm (* [| ~P; P |] ==> R *)
val classical : thm (* (~P ==> P) ==> P *)
val sizef : thm -> int (* size function for BEST_FIRST *)
val hyp_subst_tacs: (int -> tactic) list
end;
signature BASIC_CLASSICAL =
sig
type claset
val empty_cs: claset
val print_cs: claset -> unit
val print_claset: theory -> unit
val rep_cs: (* BLAST_DATA in blast.ML dependent on this *)
claset -> {safeIs: thm list, safeEs: thm list,
hazIs: thm list, hazEs: thm list,
swrappers: (string * wrapper) list,
uwrappers: (string * wrapper) list,
safe0_netpair: netpair, safep_netpair: netpair,
haz_netpair: netpair, dup_netpair: netpair,
xtra_netpair: ContextRules.netpair}
val merge_cs : claset * claset -> claset
val addDs : claset * thm list -> claset
val addEs : claset * thm list -> claset
val addIs : claset * thm list -> claset
val addSDs : claset * thm list -> claset
val addSEs : claset * thm list -> claset
val addSIs : claset * thm list -> claset
val delrules : claset * thm list -> claset
val addSWrapper : claset * (string * wrapper) -> claset
val delSWrapper : claset * string -> claset
val addWrapper : claset * (string * wrapper) -> claset
val delWrapper : claset * string -> claset
val addSbefore : claset * (string * (int -> tactic)) -> claset
val addSafter : claset * (string * (int -> tactic)) -> claset
val addbefore : claset * (string * (int -> tactic)) -> claset
val addafter : claset * (string * (int -> tactic)) -> claset
val addD2 : claset * (string * thm) -> claset
val addE2 : claset * (string * thm) -> claset
val addSD2 : claset * (string * thm) -> claset
val addSE2 : claset * (string * thm) -> claset
val appSWrappers : claset -> wrapper
val appWrappers : claset -> wrapper
val claset_ref_of_sg: Sign.sg -> claset ref
val claset_ref_of: theory -> claset ref
val claset_of_sg: Sign.sg -> claset
val claset_of: theory -> claset
val CLASET: (claset -> tactic) -> tactic
val CLASET': (claset -> 'a -> tactic) -> 'a -> tactic
val claset: unit -> claset
val claset_ref: unit -> claset ref
val fast_tac : claset -> int -> tactic
val slow_tac : claset -> int -> tactic
val weight_ASTAR : int ref
val astar_tac : claset -> int -> tactic
val slow_astar_tac : claset -> int -> tactic
val best_tac : claset -> int -> tactic
val first_best_tac : claset -> int -> tactic
val slow_best_tac : claset -> int -> tactic
val depth_tac : claset -> int -> int -> tactic
val deepen_tac : claset -> int -> int -> tactic
val contr_tac : int -> tactic
val dup_elim : thm -> thm
val dup_intr : thm -> thm
val dup_step_tac : claset -> int -> tactic
val eq_mp_tac : int -> tactic
val haz_step_tac : claset -> int -> tactic
val joinrules : thm list * thm list -> (bool * thm) list
val mp_tac : int -> tactic
val safe_tac : claset -> tactic
val safe_steps_tac : claset -> int -> tactic
val safe_step_tac : claset -> int -> tactic
val clarify_tac : claset -> int -> tactic
val clarify_step_tac : claset -> int -> tactic
val step_tac : claset -> int -> tactic
val slow_step_tac : claset -> int -> tactic
val swap : thm (* ~P ==> (~Q ==> P) ==> Q *)
val swapify : thm list -> thm list
val swap_res_tac : thm list -> int -> tactic
val inst_step_tac : claset -> int -> tactic
val inst0_step_tac : claset -> int -> tactic
val instp_step_tac : claset -> int -> tactic
val AddDs : thm list -> unit
val AddEs : thm list -> unit
val AddIs : thm list -> unit
val AddSDs : thm list -> unit
val AddSEs : thm list -> unit
val AddSIs : thm list -> unit
val Delrules : thm list -> unit
val Safe_tac : tactic
val Safe_step_tac : int -> tactic
val Clarify_tac : int -> tactic
val Clarify_step_tac : int -> tactic
val Step_tac : int -> tactic
val Fast_tac : int -> tactic
val Best_tac : int -> tactic
val Slow_tac : int -> tactic
val Slow_best_tac : int -> tactic
val Deepen_tac : int -> int -> tactic
end;
signature CLASSICAL =
sig
include BASIC_CLASSICAL
val print_local_claset: Proof.context -> unit
val get_local_claset: Proof.context -> claset
val put_local_claset: claset -> Proof.context -> Proof.context
val safe_dest_global: theory attribute
val safe_elim_global: theory attribute
val safe_intro_global: theory attribute
val haz_dest_global: theory attribute
val haz_elim_global: theory attribute
val haz_intro_global: theory attribute
val rule_del_global: theory attribute
val safe_dest_local: Proof.context attribute
val safe_elim_local: Proof.context attribute
val safe_intro_local: Proof.context attribute
val haz_dest_local: Proof.context attribute
val haz_elim_local: Proof.context attribute
val haz_intro_local: Proof.context attribute
val rule_del_local: Proof.context attribute
val cla_modifiers: (Args.T list -> (Method.modifier * Args.T list)) list
val cla_meth: (claset -> tactic) -> thm list -> Proof.context -> Proof.method
val cla_meth': (claset -> int -> tactic) -> thm list -> Proof.context -> Proof.method
val cla_method: (claset -> tactic) -> Args.src -> Proof.context -> Proof.method
val cla_method': (claset -> int -> tactic) -> Args.src -> Proof.context -> Proof.method
val setup: (theory -> theory) list
end;
functor ClassicalFun(Data: CLASSICAL_DATA): CLASSICAL =
struct
local open Data in
(*** Useful tactics for classical reasoning ***)
val imp_elim = (*cannot use bind_thm within a structure!*)
store_thm ("imp_elim", Data.make_elim mp);
(*Prove goal that assumes both P and ~P.
No backtracking if it finds an equal assumption. Perhaps should call
ematch_tac instead of eresolve_tac, but then cannot prove ZF/cantor.*)
val contr_tac = eresolve_tac [not_elim] THEN'
(eq_assume_tac ORELSE' assume_tac);
(*Finds P-->Q and P in the assumptions, replaces implication by Q.
Could do the same thing for P<->Q and P... *)
fun mp_tac i = eresolve_tac [not_elim, imp_elim] i THEN assume_tac i;
(*Like mp_tac but instantiates no variables*)
fun eq_mp_tac i = ematch_tac [not_elim, imp_elim] i THEN eq_assume_tac i;
val swap =
store_thm ("swap", rule_by_tactic (etac thin_rl 1) (not_elim RS classical));
(*Creates rules to eliminate ~A, from rules to introduce A*)
fun swapify intrs = intrs RLN (2, [swap]);
fun swapped x = Attrib.no_args (fn (x, th) => (x, th RSN (2, swap))) x;
(*Uses introduction rules in the normal way, or on negated assumptions,
trying rules in order. *)
fun swap_res_tac rls =
let fun addrl (rl,brls) = (false, rl) :: (true, rl RSN (2,swap)) :: brls
in assume_tac ORELSE'
contr_tac ORELSE'
biresolve_tac (foldr addrl (rls,[]))
end;
(*Duplication of hazardous rules, for complete provers*)
fun dup_intr th = zero_var_indexes (th RS classical);
fun dup_elim th =
(case try
(rule_by_tactic (TRYALL (etac revcut_rl)))
(th RSN (2, revcut_rl) |> assumption 2 |> Seq.hd) of
Some th' => th'
| _ => error ("Bad format for elimination rule\n" ^ string_of_thm th));
(**** Classical rule sets ****)
datatype claset =
CS of {safeIs : thm list, (*safe introduction rules*)
safeEs : thm list, (*safe elimination rules*)
hazIs : thm list, (*unsafe introduction rules*)
hazEs : thm list, (*unsafe elimination rules*)
swrappers : (string * wrapper) list, (*for transforming safe_step_tac*)
uwrappers : (string * wrapper) list, (*for transforming step_tac*)
safe0_netpair : netpair, (*nets for trivial cases*)
safep_netpair : netpair, (*nets for >0 subgoals*)
haz_netpair : netpair, (*nets for unsafe rules*)
dup_netpair : netpair, (*nets for duplication*)
xtra_netpair : ContextRules.netpair}; (*nets for extra rules*)
(*Desired invariants are
safe0_netpair = build safe0_brls,
safep_netpair = build safep_brls,
haz_netpair = build (joinrules(hazIs, hazEs)),
dup_netpair = build (joinrules(map dup_intr hazIs,
map dup_elim hazEs))
where build = build_netpair(Net.empty,Net.empty),
safe0_brls contains all brules that solve the subgoal, and
safep_brls contains all brules that generate 1 or more new subgoals.
The theorem lists are largely comments, though they are used in merge_cs and print_cs.
Nets must be built incrementally, to save space and time.
*)
val empty_netpair = (Net.empty, Net.empty);
val empty_cs =
CS{safeIs = [],
safeEs = [],
hazIs = [],
hazEs = [],
swrappers = [],
uwrappers = [],
safe0_netpair = empty_netpair,
safep_netpair = empty_netpair,
haz_netpair = empty_netpair,
dup_netpair = empty_netpair,
xtra_netpair = empty_netpair};
fun print_cs (CS {safeIs, safeEs, hazIs, hazEs, ...}) =
let val pretty_thms = map Display.pretty_thm in
[Pretty.big_list "safe introduction rules (intro!):" (pretty_thms safeIs),
Pretty.big_list "introduction rules (intro):" (pretty_thms hazIs),
Pretty.big_list "safe elimination rules (elim!):" (pretty_thms safeEs),
Pretty.big_list "elimination rules (elim):" (pretty_thms hazEs)]
|> Pretty.chunks |> Pretty.writeln
end;
fun rep_cs (CS args) = args;
local
fun wrap l tac = foldr (fn ((name,tacf),w) => tacf w) (l, tac);
in
fun appSWrappers (CS{swrappers,...}) = wrap swrappers;
fun appWrappers (CS{uwrappers,...}) = wrap uwrappers;
end;
(*** Adding (un)safe introduction or elimination rules.
In case of overlap, new rules are tried BEFORE old ones!!
***)
(*For use with biresolve_tac. Combines intro rules with swap to handle negated
assumptions. Pairs elim rules with true. *)
fun joinrules (intrs, elims) =
(map (pair true) (elims @ swapify intrs) @ map (pair false) intrs);
fun joinrules' (intrs, elims) =
(map (pair true) elims @ map (pair false) intrs);
(*Priority: prefer rules with fewest subgoals,
then rules added most recently (preferring the head of the list).*)
fun tag_brls k [] = []
| tag_brls k (brl::brls) =
(1000000*subgoals_of_brl brl + k, brl) ::
tag_brls (k+1) brls;
fun tag_brls' _ _ [] = []
| tag_brls' w k (brl::brls) = ((w, k), brl) :: tag_brls' w (k + 1) brls;
fun insert_tagged_list kbrls netpr = foldr Tactic.insert_tagged_brl (kbrls, netpr);
(*Insert into netpair that already has nI intr rules and nE elim rules.
Count the intr rules double (to account for swapify). Negate to give the
new insertions the lowest priority.*)
fun insert (nI, nE) = insert_tagged_list o (tag_brls (~(2*nI+nE))) o joinrules;
fun insert' w (nI, nE) = insert_tagged_list o tag_brls' w (~(nI + nE)) o joinrules';
fun delete_tagged_list brls netpr = foldr Tactic.delete_tagged_brl (brls, netpr);
fun delete x = delete_tagged_list (joinrules x);
fun delete' x = delete_tagged_list (joinrules' x);
val mem_thm = gen_mem Drule.eq_thm_prop
and rem_thm = gen_rem Drule.eq_thm_prop;
(*Warn if the rule is already present ELSEWHERE in the claset. The addition
is still allowed.*)
fun warn_dup th (CS{safeIs, safeEs, hazIs, hazEs, ...}) =
if mem_thm (th, safeIs) then
warning ("Rule already declared as safe introduction (intro!)\n" ^ string_of_thm th)
else if mem_thm (th, safeEs) then
warning ("Rule already declared as safe elimination (elim!)\n" ^ string_of_thm th)
else if mem_thm (th, hazIs) then
warning ("Rule already declared as introduction (intro)\n" ^ string_of_thm th)
else if mem_thm (th, hazEs) then
warning ("Rule already declared as elimination (elim)\n" ^ string_of_thm th)
else ();
(*** Safe rules ***)
fun addSI (cs as CS{safeIs, safeEs, hazIs, hazEs, swrappers, uwrappers,
safe0_netpair, safep_netpair, haz_netpair, dup_netpair, xtra_netpair},
th) =
if mem_thm (th, safeIs) then
(warning ("Ignoring duplicate safe introduction (intro!)\n" ^ string_of_thm th);
cs)
else
let val (safe0_rls, safep_rls) = (*0 subgoals vs 1 or more*)
partition Thm.no_prems [th]
val nI = length safeIs + 1
and nE = length safeEs
in warn_dup th cs;
CS{safeIs = th::safeIs,
safe0_netpair = insert (nI,nE) (safe0_rls, []) safe0_netpair,
safep_netpair = insert (nI,nE) (safep_rls, []) safep_netpair,
safeEs = safeEs,
hazIs = hazIs,
hazEs = hazEs,
swrappers = swrappers,
uwrappers = uwrappers,
haz_netpair = haz_netpair,
dup_netpair = dup_netpair,
xtra_netpair = insert' 0 (nI,nE) ([th], []) xtra_netpair}
end;
fun addSE (cs as CS{safeIs, safeEs, hazIs, hazEs, swrappers, uwrappers,
safe0_netpair, safep_netpair, haz_netpair, dup_netpair, xtra_netpair},
th) =
if mem_thm (th, safeEs) then
(warning ("Ignoring duplicate safe elimination (elim!)\n" ^ string_of_thm th);
cs)
else
let val (safe0_rls, safep_rls) = (*0 subgoals vs 1 or more*)
partition (fn rl => nprems_of rl=1) [th]
val nI = length safeIs
and nE = length safeEs + 1
in warn_dup th cs;
CS{safeEs = th::safeEs,
safe0_netpair = insert (nI,nE) ([], safe0_rls) safe0_netpair,
safep_netpair = insert (nI,nE) ([], safep_rls) safep_netpair,
safeIs = safeIs,
hazIs = hazIs,
hazEs = hazEs,
swrappers = swrappers,
uwrappers = uwrappers,
haz_netpair = haz_netpair,
dup_netpair = dup_netpair,
xtra_netpair = insert' 0 (nI,nE) ([], [th]) xtra_netpair}
end;
fun rev_foldl f (e, l) = foldl f (e, rev l);
val op addSIs = rev_foldl addSI;
val op addSEs = rev_foldl addSE;
fun cs addSDs ths = cs addSEs (map Data.make_elim ths);
(*** Hazardous (unsafe) rules ***)
fun addI (cs as CS{safeIs, safeEs, hazIs, hazEs, swrappers, uwrappers,
safe0_netpair, safep_netpair, haz_netpair, dup_netpair, xtra_netpair},
th)=
if mem_thm (th, hazIs) then
(warning ("Ignoring duplicate introduction (intro)\n" ^ string_of_thm th);
cs)
else
let val nI = length hazIs + 1
and nE = length hazEs
in warn_dup th cs;
CS{hazIs = th::hazIs,
haz_netpair = insert (nI,nE) ([th], []) haz_netpair,
dup_netpair = insert (nI,nE) (map dup_intr [th], []) dup_netpair,
safeIs = safeIs,
safeEs = safeEs,
hazEs = hazEs,
swrappers = swrappers,
uwrappers = uwrappers,
safe0_netpair = safe0_netpair,
safep_netpair = safep_netpair,
xtra_netpair = insert' 1 (nI,nE) ([th], []) xtra_netpair}
end;
fun addE (cs as CS{safeIs, safeEs, hazIs, hazEs, swrappers, uwrappers,
safe0_netpair, safep_netpair, haz_netpair, dup_netpair, xtra_netpair},
th) =
if mem_thm (th, hazEs) then
(warning ("Ignoring duplicate elimination (elim)\n" ^ string_of_thm th);
cs)
else
let val nI = length hazIs
and nE = length hazEs + 1
in warn_dup th cs;
CS{hazEs = th::hazEs,
haz_netpair = insert (nI,nE) ([], [th]) haz_netpair,
dup_netpair = insert (nI,nE) ([], map dup_elim [th]) dup_netpair,
safeIs = safeIs,
safeEs = safeEs,
hazIs = hazIs,
swrappers = swrappers,
uwrappers = uwrappers,
safe0_netpair = safe0_netpair,
safep_netpair = safep_netpair,
xtra_netpair = insert' 1 (nI,nE) ([], [th]) xtra_netpair}
end;
val op addIs = rev_foldl addI;
val op addEs = rev_foldl addE;
fun cs addDs ths = cs addEs (map Data.make_elim ths);
(*** Deletion of rules
Working out what to delete, requires repeating much of the code used
to insert.
Separate functions delSI, etc., are not exported; instead delrules
searches in all the lists and chooses the relevant delXX functions.
***)
fun delSI th
(cs as CS{safeIs, safeEs, hazIs, hazEs, swrappers, uwrappers,
safe0_netpair, safep_netpair, haz_netpair, dup_netpair, xtra_netpair}) =
if mem_thm (th, safeIs) then
let val (safe0_rls, safep_rls) = partition Thm.no_prems [th]
in CS{safe0_netpair = delete (safe0_rls, []) safe0_netpair,
safep_netpair = delete (safep_rls, []) safep_netpair,
safeIs = rem_thm (safeIs,th),
safeEs = safeEs,
hazIs = hazIs,
hazEs = hazEs,
swrappers = swrappers,
uwrappers = uwrappers,
haz_netpair = haz_netpair,
dup_netpair = dup_netpair,
xtra_netpair = delete' ([th], []) xtra_netpair}
end
else cs;
fun delSE th
(cs as CS{safeIs, safeEs, hazIs, hazEs, swrappers, uwrappers,
safe0_netpair, safep_netpair, haz_netpair, dup_netpair, xtra_netpair}) =
if mem_thm (th, safeEs) then
let val (safe0_rls, safep_rls) = partition (fn rl => nprems_of rl=1) [th]
in CS{safe0_netpair = delete ([], safe0_rls) safe0_netpair,
safep_netpair = delete ([], safep_rls) safep_netpair,
safeIs = safeIs,
safeEs = rem_thm (safeEs,th),
hazIs = hazIs,
hazEs = hazEs,
swrappers = swrappers,
uwrappers = uwrappers,
haz_netpair = haz_netpair,
dup_netpair = dup_netpair,
xtra_netpair = delete' ([], [th]) xtra_netpair}
end
else cs;
fun delI th
(cs as CS{safeIs, safeEs, hazIs, hazEs, swrappers, uwrappers,
safe0_netpair, safep_netpair, haz_netpair, dup_netpair, xtra_netpair}) =
if mem_thm (th, hazIs) then
CS{haz_netpair = delete ([th], []) haz_netpair,
dup_netpair = delete ([dup_intr th], []) dup_netpair,
safeIs = safeIs,
safeEs = safeEs,
hazIs = rem_thm (hazIs,th),
hazEs = hazEs,
swrappers = swrappers,
uwrappers = uwrappers,
safe0_netpair = safe0_netpair,
safep_netpair = safep_netpair,
xtra_netpair = delete' ([th], []) xtra_netpair}
else cs;
fun delE th
(cs as CS{safeIs, safeEs, hazIs, hazEs, swrappers, uwrappers,
safe0_netpair, safep_netpair, haz_netpair, dup_netpair, xtra_netpair}) =
if mem_thm (th, hazEs) then
CS{haz_netpair = delete ([], [th]) haz_netpair,
dup_netpair = delete ([], [dup_elim th]) dup_netpair,
safeIs = safeIs,
safeEs = safeEs,
hazIs = hazIs,
hazEs = rem_thm (hazEs,th),
swrappers = swrappers,
uwrappers = uwrappers,
safe0_netpair = safe0_netpair,
safep_netpair = safep_netpair,
xtra_netpair = delete' ([], [th]) xtra_netpair}
else cs;
(*Delete ALL occurrences of "th" in the claset (perhaps from several lists)*)
fun delrule (cs as CS{safeIs, safeEs, hazIs, hazEs, ...}, th) =
let val th' = Data.make_elim th in
if mem_thm (th, safeIs) orelse mem_thm (th, safeEs) orelse
mem_thm (th, hazIs) orelse mem_thm (th, hazEs) orelse
mem_thm (th', safeEs) orelse mem_thm (th', hazEs)
then delSI th (delSE th (delI th (delE th (delSE th' (delE th' cs)))))
else (warning ("Undeclared classical rule\n" ^ (string_of_thm th)); cs)
end;
val op delrules = foldl delrule;
(*** Modifying the wrapper tacticals ***)
fun update_swrappers
(CS{safeIs, safeEs, hazIs, hazEs, swrappers, uwrappers,
safe0_netpair, safep_netpair, haz_netpair, dup_netpair, xtra_netpair}) f =
CS{safeIs = safeIs, safeEs = safeEs, hazIs = hazIs, hazEs = hazEs,
swrappers = f swrappers, uwrappers = uwrappers,
safe0_netpair = safe0_netpair, safep_netpair = safep_netpair,
haz_netpair = haz_netpair, dup_netpair = dup_netpair, xtra_netpair = xtra_netpair};
fun update_uwrappers
(CS{safeIs, safeEs, hazIs, hazEs, swrappers, uwrappers,
safe0_netpair, safep_netpair, haz_netpair, dup_netpair, xtra_netpair}) f =
CS{safeIs = safeIs, safeEs = safeEs, hazIs = hazIs, hazEs = hazEs,
swrappers = swrappers, uwrappers = f uwrappers,
safe0_netpair = safe0_netpair, safep_netpair = safep_netpair,
haz_netpair = haz_netpair, dup_netpair = dup_netpair, xtra_netpair = xtra_netpair};
(*Add/replace a safe wrapper*)
fun cs addSWrapper new_swrapper = update_swrappers cs (fn swrappers =>
overwrite_warn (swrappers, new_swrapper)
("Overwriting safe wrapper " ^ fst new_swrapper));
(*Add/replace an unsafe wrapper*)
fun cs addWrapper new_uwrapper = update_uwrappers cs (fn uwrappers =>
overwrite_warn (uwrappers, new_uwrapper)
("Overwriting unsafe wrapper "^fst new_uwrapper));
(*Remove a safe wrapper*)
fun cs delSWrapper name = update_swrappers cs (fn swrappers =>
let val (del,rest) = partition (fn (n,_) => n=name) swrappers
in if null del then (warning ("No such safe wrapper in claset: "^ name);
swrappers) else rest end);
(*Remove an unsafe wrapper*)
fun cs delWrapper name = update_uwrappers cs (fn uwrappers =>
let val (del,rest) = partition (fn (n,_) => n=name) uwrappers
in if null del then (warning ("No such unsafe wrapper in claset: " ^ name);
uwrappers) else rest end);
(* compose a safe tactic alternatively before/after safe_step_tac *)
fun cs addSbefore (name, tac1) =
cs addSWrapper (name, fn tac2 => tac1 ORELSE' tac2);
fun cs addSafter (name, tac2) =
cs addSWrapper (name, fn tac1 => tac1 ORELSE' tac2);
(*compose a tactic alternatively before/after the step tactic *)
fun cs addbefore (name, tac1) =
cs addWrapper (name, fn tac2 => tac1 APPEND' tac2);
fun cs addafter (name, tac2) =
cs addWrapper (name, fn tac1 => tac1 APPEND' tac2);
fun cs addD2 (name, thm) =
cs addafter (name, datac thm 1);
fun cs addE2 (name, thm) =
cs addafter (name, eatac thm 1);
fun cs addSD2 (name, thm) =
cs addSafter (name, dmatch_tac [thm] THEN' eq_assume_tac);
fun cs addSE2 (name, thm) =
cs addSafter (name, ematch_tac [thm] THEN' eq_assume_tac);
(*Merge works by adding all new rules of the 2nd claset into the 1st claset.
Merging the term nets may look more efficient, but the rather delicate
treatment of priority might get muddled up.*)
fun merge_cs (cs as CS{safeIs, safeEs, hazIs, hazEs, ...},
CS{safeIs=safeIs2, safeEs=safeEs2, hazIs=hazIs2, hazEs=hazEs2, swrappers, uwrappers, ...}) =
let val safeIs' = gen_rems Drule.eq_thm_prop (safeIs2,safeIs)
val safeEs' = gen_rems Drule.eq_thm_prop (safeEs2,safeEs)
val hazIs' = gen_rems Drule.eq_thm_prop (hazIs2, hazIs)
val hazEs' = gen_rems Drule.eq_thm_prop (hazEs2, hazEs)
val cs1 = cs addSIs safeIs'
addSEs safeEs'
addIs hazIs'
addEs hazEs'
val cs2 = update_swrappers cs1 (fn ws => merge_alists ws swrappers);
val cs3 = update_uwrappers cs2 (fn ws => merge_alists ws uwrappers);
in cs3
end;
(**** Simple tactics for theorem proving ****)
(*Attack subgoals using safe inferences -- matching, not resolution*)
fun safe_step_tac (cs as CS{safe0_netpair,safep_netpair,...}) =
appSWrappers cs (FIRST' [
eq_assume_tac,
eq_mp_tac,
bimatch_from_nets_tac safe0_netpair,
FIRST' hyp_subst_tacs,
bimatch_from_nets_tac safep_netpair]);
(*Repeatedly attack a subgoal using safe inferences -- it's deterministic!*)
fun safe_steps_tac cs = REPEAT_DETERM1 o
(fn i => COND (has_fewer_prems i) no_tac (safe_step_tac cs i));
(*Repeatedly attack subgoals using safe inferences -- it's deterministic!*)
fun safe_tac cs = REPEAT_DETERM1 (FIRSTGOAL (safe_steps_tac cs));
(*** Clarify_tac: do safe steps without causing branching ***)
fun nsubgoalsP n (k,brl) = (subgoals_of_brl brl = n);
(*version of bimatch_from_nets_tac that only applies rules that
create precisely n subgoals.*)
fun n_bimatch_from_nets_tac n =
biresolution_from_nets_tac (Tactic.orderlist o filter (nsubgoalsP n)) true;
fun eq_contr_tac i = ematch_tac [not_elim] i THEN eq_assume_tac i;
val eq_assume_contr_tac = eq_assume_tac ORELSE' eq_contr_tac;
(*Two-way branching is allowed only if one of the branches immediately closes*)
fun bimatch2_tac netpair i =
n_bimatch_from_nets_tac 2 netpair i THEN
(eq_assume_contr_tac i ORELSE eq_assume_contr_tac (i+1));
(*Attack subgoals using safe inferences -- matching, not resolution*)
fun clarify_step_tac (cs as CS{safe0_netpair,safep_netpair,...}) =
appSWrappers cs (FIRST' [
eq_assume_contr_tac,
bimatch_from_nets_tac safe0_netpair,
FIRST' hyp_subst_tacs,
n_bimatch_from_nets_tac 1 safep_netpair,
bimatch2_tac safep_netpair]);
fun clarify_tac cs = SELECT_GOAL (REPEAT_DETERM (clarify_step_tac cs 1));
(*** Unsafe steps instantiate variables or lose information ***)
(*Backtracking is allowed among the various these unsafe ways of
proving a subgoal. *)
fun inst0_step_tac (CS{safe0_netpair,safep_netpair,...}) =
assume_tac APPEND'
contr_tac APPEND'
biresolve_from_nets_tac safe0_netpair;
(*These unsafe steps could generate more subgoals.*)
fun instp_step_tac (CS{safep_netpair,...}) =
biresolve_from_nets_tac safep_netpair;
(*These steps could instantiate variables and are therefore unsafe.*)
fun inst_step_tac cs = inst0_step_tac cs APPEND' instp_step_tac cs;
fun haz_step_tac (CS{haz_netpair,...}) =
biresolve_from_nets_tac haz_netpair;
(*Single step for the prover. FAILS unless it makes progress. *)
fun step_tac cs i = safe_tac cs ORELSE appWrappers cs
(inst_step_tac cs ORELSE' haz_step_tac cs) i;
(*Using a "safe" rule to instantiate variables is unsafe. This tactic
allows backtracking from "safe" rules to "unsafe" rules here.*)
fun slow_step_tac cs i = safe_tac cs ORELSE appWrappers cs
(inst_step_tac cs APPEND' haz_step_tac cs) i;
(**** The following tactics all fail unless they solve one goal ****)
(*Dumb but fast*)
fun fast_tac cs =
ObjectLogic.atomize_tac THEN' SELECT_GOAL (DEPTH_SOLVE (step_tac cs 1));
(*Slower but smarter than fast_tac*)
fun best_tac cs =
ObjectLogic.atomize_tac THEN'
SELECT_GOAL (BEST_FIRST (has_fewer_prems 1, sizef) (step_tac cs 1));
(*even a bit smarter than best_tac*)
fun first_best_tac cs =
ObjectLogic.atomize_tac THEN'
SELECT_GOAL (BEST_FIRST (has_fewer_prems 1, sizef) (FIRSTGOAL (step_tac cs)));
fun slow_tac cs =
ObjectLogic.atomize_tac THEN'
SELECT_GOAL (DEPTH_SOLVE (slow_step_tac cs 1));
fun slow_best_tac cs =
ObjectLogic.atomize_tac THEN'
SELECT_GOAL (BEST_FIRST (has_fewer_prems 1, sizef) (slow_step_tac cs 1));
(***ASTAR with weight weight_ASTAR, by Norbert Voelker*)
val weight_ASTAR = ref 5;
fun astar_tac cs =
ObjectLogic.atomize_tac THEN'
SELECT_GOAL
(ASTAR (has_fewer_prems 1, fn lev => fn thm => size_of_thm thm + !weight_ASTAR * lev)
(step_tac cs 1));
fun slow_astar_tac cs =
ObjectLogic.atomize_tac THEN'
SELECT_GOAL
(ASTAR (has_fewer_prems 1, fn lev => fn thm => size_of_thm thm + !weight_ASTAR * lev)
(slow_step_tac cs 1));
(**** Complete tactic, loosely based upon LeanTaP. This tactic is the outcome
of much experimentation! Changing APPEND to ORELSE below would prove
easy theorems faster, but loses completeness -- and many of the harder
theorems such as 43. ****)
(*Non-deterministic! Could always expand the first unsafe connective.
That's hard to implement and did not perform better in experiments, due to
greater search depth required.*)
fun dup_step_tac (cs as (CS{dup_netpair,...})) =
biresolve_from_nets_tac dup_netpair;
(*Searching to depth m. A variant called nodup_depth_tac appears in clasimp.ML*)
local
fun slow_step_tac' cs = appWrappers cs
(instp_step_tac cs APPEND' dup_step_tac cs);
in fun depth_tac cs m i state = SELECT_GOAL
(safe_steps_tac cs 1 THEN_ELSE
(DEPTH_SOLVE (depth_tac cs m 1),
inst0_step_tac cs 1 APPEND COND (K (m=0)) no_tac
(slow_step_tac' cs 1 THEN DEPTH_SOLVE (depth_tac cs (m-1) 1))
)) i state;
end;
(*Search, with depth bound m.
This is the "entry point", which does safe inferences first.*)
fun safe_depth_tac cs m =
SUBGOAL
(fn (prem,i) =>
let val deti =
(*No Vars in the goal? No need to backtrack between goals.*)
case term_vars prem of
[] => DETERM
| _::_ => I
in SELECT_GOAL (TRY (safe_tac cs) THEN
DEPTH_SOLVE (deti (depth_tac cs m 1))) i
end);
fun deepen_tac cs = DEEPEN (2,10) (safe_depth_tac cs);
(** claset theory data **)
(* theory data kind 'Provers/claset' *)
structure GlobalClasetArgs =
struct
val name = "Provers/claset";
type T = claset ref;
val empty = ref empty_cs;
fun copy (ref cs) = (ref cs): T; (*create new reference!*)
val prep_ext = copy;
fun merge (ref cs1, ref cs2) = ref (merge_cs (cs1, cs2));
fun print _ (ref cs) = print_cs cs;
end;
structure GlobalClaset = TheoryDataFun(GlobalClasetArgs);
val print_claset = GlobalClaset.print;
val claset_ref_of_sg = GlobalClaset.get_sg;
val claset_ref_of = GlobalClaset.get;
(* access claset *)
val claset_of_sg = ! o claset_ref_of_sg;
val claset_of = claset_of_sg o Theory.sign_of;
fun CLASET tacf state = tacf (claset_of_sg (Thm.sign_of_thm state)) state;
fun CLASET' tacf i state = tacf (claset_of_sg (Thm.sign_of_thm state)) i state;
val claset = claset_of o Context.the_context;
val claset_ref = claset_ref_of_sg o Theory.sign_of o Context.the_context;
(* change claset *)
fun change_claset f x = claset_ref () := (f (claset (), x));
val AddDs = change_claset (op addDs);
val AddEs = change_claset (op addEs);
val AddIs = change_claset (op addIs);
val AddSDs = change_claset (op addSDs);
val AddSEs = change_claset (op addSEs);
val AddSIs = change_claset (op addSIs);
val Delrules = change_claset (op delrules);
(* proof data kind 'Provers/claset' *)
structure LocalClasetArgs =
struct
val name = "Provers/claset";
type T = claset;
val init = claset_of;
fun print _ cs = print_cs cs;
end;
structure LocalClaset = ProofDataFun(LocalClasetArgs);
val print_local_claset = LocalClaset.print;
val get_local_claset = LocalClaset.get;
val put_local_claset = LocalClaset.put;
(* attributes *)
fun change_global_cs f (thy, th) =
let val r = claset_ref_of thy
in r := f (! r, [th]); (thy, th) end;
fun change_local_cs f (ctxt, th) =
let val cs = f (get_local_claset ctxt, [th])
in (put_local_claset cs ctxt, th) end;
val safe_dest_global = change_global_cs (op addSDs);
val safe_elim_global = change_global_cs (op addSEs);
val safe_intro_global = change_global_cs (op addSIs);
val haz_dest_global = change_global_cs (op addDs);
val haz_elim_global = change_global_cs (op addEs);
val haz_intro_global = change_global_cs (op addIs);
val rule_del_global = change_global_cs (op delrules) o ContextRules.rule_del_global;
val safe_dest_local = change_local_cs (op addSDs);
val safe_elim_local = change_local_cs (op addSEs);
val safe_intro_local = change_local_cs (op addSIs);
val haz_dest_local = change_local_cs (op addDs);
val haz_elim_local = change_local_cs (op addEs);
val haz_intro_local = change_local_cs (op addIs);
val rule_del_local = change_local_cs (op delrules) o ContextRules.rule_del_local;
(* tactics referring to the implicit claset *)
(*the abstraction over the proof state delays the dereferencing*)
fun Safe_tac st = safe_tac (claset()) st;
fun Safe_step_tac i st = safe_step_tac (claset()) i st;
fun Clarify_step_tac i st = clarify_step_tac (claset()) i st;
fun Clarify_tac i st = clarify_tac (claset()) i st;
fun Step_tac i st = step_tac (claset()) i st;
fun Fast_tac i st = fast_tac (claset()) i st;
fun Best_tac i st = best_tac (claset()) i st;
fun Slow_tac i st = slow_tac (claset()) i st;
fun Slow_best_tac i st = slow_best_tac (claset()) i st;
fun Deepen_tac m = deepen_tac (claset()) m;
end;
(** concrete syntax of attributes **)
(* add / del rules *)
val introN = "intro";
val elimN = "elim";
val destN = "dest";
val ruleN = "rule";
fun add_rule xtra haz safe = Attrib.syntax
(Scan.lift (Args.query |-- Scan.option Args.nat >> xtra || Args.bang >> K safe ||
Scan.succeed haz));
fun del_rule att = Attrib.syntax (Scan.lift Args.del >> K att);
(* setup_attrs *)
fun elim_format x = Attrib.no_args (Drule.rule_attribute (K Data.make_elim)) x;
val setup_attrs = Attrib.add_attributes
[("elim_format", (elim_format, elim_format),
"destruct rule turned into elimination rule format (classical)"),
("swapped", (swapped, swapped), "classical swap of introduction rule"),
(destN,
(add_rule ContextRules.dest_query_global haz_dest_global safe_dest_global,
add_rule ContextRules.dest_query_local haz_dest_local safe_dest_local),
"declaration of destruction rule"),
(elimN,
(add_rule ContextRules.elim_query_global haz_elim_global safe_elim_global,
add_rule ContextRules.elim_query_local haz_elim_local safe_elim_local),
"declaration of elimination rule"),
(introN,
(add_rule ContextRules.intro_query_global haz_intro_global safe_intro_global,
add_rule ContextRules.intro_query_local haz_intro_local safe_intro_local),
"declaration of introduction rule"),
(ruleN, (del_rule rule_del_global, del_rule rule_del_local),
"remove declaration of intro/elim/dest rule")];
(** proof methods **)
(* METHOD_CLASET' *)
fun METHOD_CLASET' tac ctxt =
Method.METHOD (HEADGOAL o tac ctxt (get_local_claset ctxt));
local
fun some_rule_tac ctxt (CS {xtra_netpair, ...}) facts = SUBGOAL (fn (goal, i) =>
let
val [rules1, rules2, rules4] = ContextRules.find_rules false facts goal ctxt;
val rules3 = ContextRules.find_rules_netpair true facts goal xtra_netpair;
val rules = rules1 @ rules2 @ rules3 @ rules4;
val ruleq = Method.multi_resolves facts rules;
in
Method.trace ctxt rules;
fn st => Seq.flat (Seq.map (fn rule => Tactic.rtac rule i st) ruleq)
end);
fun rule_tac [] ctxt cs facts = some_rule_tac ctxt cs facts
| rule_tac rules _ _ facts = Method.rule_tac rules facts;
fun default_tac rules ctxt cs facts =
rule_tac rules ctxt cs facts ORELSE'
AxClass.default_intro_classes_tac facts;
in
val rule = METHOD_CLASET' o rule_tac;
val default = METHOD_CLASET' o default_tac;
end;
(* contradiction method *)
val contradiction = Method.rule [Data.not_elim, Data.not_elim COMP Drule.swap_prems_rl];
(* automatic methods *)
val cla_modifiers =
[Args.$$$ destN -- Args.bang_colon >> K ((I, safe_dest_local): Method.modifier),
Args.$$$ destN -- Args.colon >> K (I, haz_dest_local),
Args.$$$ elimN -- Args.bang_colon >> K (I, safe_elim_local),
Args.$$$ elimN -- Args.colon >> K (I, haz_elim_local),
Args.$$$ introN -- Args.bang_colon >> K (I, safe_intro_local),
Args.$$$ introN -- Args.colon >> K (I, haz_intro_local),
Args.del -- Args.colon >> K (I, rule_del_local)];
fun cla_meth tac prems ctxt = Method.METHOD (fn facts =>
ALLGOALS (Method.insert_tac (prems @ facts)) THEN tac (get_local_claset ctxt));
fun cla_meth' tac prems ctxt = Method.METHOD (fn facts =>
HEADGOAL (Method.insert_tac (prems @ facts) THEN' tac (get_local_claset ctxt)));
val cla_method = Method.bang_sectioned_args cla_modifiers o cla_meth;
val cla_method' = Method.bang_sectioned_args cla_modifiers o cla_meth';
(** setup_methods **)
val setup_methods = Method.add_methods
[("default", Method.thms_ctxt_args default, "apply some intro/elim rule (potentially classical)"),
("rule", Method.thms_ctxt_args rule, "apply some intro/elim rule (potentially classical)"),
("contradiction", Method.no_args contradiction, "proof by contradiction"),
("clarify", cla_method' (CHANGED_PROP oo clarify_tac), "repeatedly apply safe steps"),
("fast", cla_method' fast_tac, "classical prover (depth-first)"),
("slow", cla_method' slow_tac, "classical prover (slow depth-first)"),
("best", cla_method' best_tac, "classical prover (best-first)"),
("safe", cla_method (CHANGED_PROP o safe_tac), "classical prover (apply safe rules)")];
(** theory setup **)
val setup = [GlobalClaset.init, LocalClaset.init, setup_attrs, setup_methods];
(** outer syntax **)
val print_clasetP =
OuterSyntax.improper_command "print_claset" "print context of Classical Reasoner"
OuterSyntax.Keyword.diag
(Scan.succeed (Toplevel.no_timing o Toplevel.unknown_context o (Toplevel.keep
(Toplevel.node_case print_claset (print_local_claset o Proof.context_of)))));
val _ = OuterSyntax.add_parsers [print_clasetP];
end;