(* Title: HOL/Euclidean_Division.thy
Author: Manuel Eberl, TU Muenchen
Author: Florian Haftmann, TU Muenchen
*)
section \<open>Division in euclidean (semi)rings\<close>
theory Euclidean_Division
imports Int Lattices_Big
begin
subsection \<open>Euclidean (semi)rings with explicit division and remainder\<close>
class euclidean_semiring = semidom_modulo +
fixes euclidean_size :: "'a \<Rightarrow> nat"
assumes size_0 [simp]: "euclidean_size 0 = 0"
assumes mod_size_less:
"b \<noteq> 0 \<Longrightarrow> euclidean_size (a mod b) < euclidean_size b"
assumes size_mult_mono:
"b \<noteq> 0 \<Longrightarrow> euclidean_size a \<le> euclidean_size (a * b)"
begin
lemma euclidean_size_eq_0_iff [simp]:
"euclidean_size b = 0 \<longleftrightarrow> b = 0"
proof
assume "b = 0"
then show "euclidean_size b = 0"
by simp
next
assume "euclidean_size b = 0"
show "b = 0"
proof (rule ccontr)
assume "b \<noteq> 0"
with mod_size_less have "euclidean_size (b mod b) < euclidean_size b" .
with \<open>euclidean_size b = 0\<close> show False
by simp
qed
qed
lemma euclidean_size_greater_0_iff [simp]:
"euclidean_size b > 0 \<longleftrightarrow> b \<noteq> 0"
using euclidean_size_eq_0_iff [symmetric, of b] by safe simp
lemma size_mult_mono': "b \<noteq> 0 \<Longrightarrow> euclidean_size a \<le> euclidean_size (b * a)"
by (subst mult.commute) (rule size_mult_mono)
lemma dvd_euclidean_size_eq_imp_dvd:
assumes "a \<noteq> 0" and "euclidean_size a = euclidean_size b"
and "b dvd a"
shows "a dvd b"
proof (rule ccontr)
assume "\<not> a dvd b"
hence "b mod a \<noteq> 0" using mod_0_imp_dvd [of b a] by blast
then have "b mod a \<noteq> 0" by (simp add: mod_eq_0_iff_dvd)
from \<open>b dvd a\<close> have "b dvd b mod a" by (simp add: dvd_mod_iff)
then obtain c where "b mod a = b * c" unfolding dvd_def by blast
with \<open>b mod a \<noteq> 0\<close> have "c \<noteq> 0" by auto
with \<open>b mod a = b * c\<close> have "euclidean_size (b mod a) \<ge> euclidean_size b"
using size_mult_mono by force
moreover from \<open>\<not> a dvd b\<close> and \<open>a \<noteq> 0\<close>
have "euclidean_size (b mod a) < euclidean_size a"
using mod_size_less by blast
ultimately show False using \<open>euclidean_size a = euclidean_size b\<close>
by simp
qed
lemma euclidean_size_times_unit:
assumes "is_unit a"
shows "euclidean_size (a * b) = euclidean_size b"
proof (rule antisym)
from assms have [simp]: "a \<noteq> 0" by auto
thus "euclidean_size (a * b) \<ge> euclidean_size b" by (rule size_mult_mono')
from assms have "is_unit (1 div a)" by simp
hence "1 div a \<noteq> 0" by (intro notI) simp_all
hence "euclidean_size (a * b) \<le> euclidean_size ((1 div a) * (a * b))"
by (rule size_mult_mono')
also from assms have "(1 div a) * (a * b) = b"
by (simp add: algebra_simps unit_div_mult_swap)
finally show "euclidean_size (a * b) \<le> euclidean_size b" .
qed
lemma euclidean_size_unit:
"is_unit a \<Longrightarrow> euclidean_size a = euclidean_size 1"
using euclidean_size_times_unit [of a 1] by simp
lemma unit_iff_euclidean_size:
"is_unit a \<longleftrightarrow> euclidean_size a = euclidean_size 1 \<and> a \<noteq> 0"
proof safe
assume A: "a \<noteq> 0" and B: "euclidean_size a = euclidean_size 1"
show "is_unit a"
by (rule dvd_euclidean_size_eq_imp_dvd [OF A B]) simp_all
qed (auto intro: euclidean_size_unit)
lemma euclidean_size_times_nonunit:
assumes "a \<noteq> 0" "b \<noteq> 0" "\<not> is_unit a"
shows "euclidean_size b < euclidean_size (a * b)"
proof (rule ccontr)
assume "\<not>euclidean_size b < euclidean_size (a * b)"
with size_mult_mono'[OF assms(1), of b]
have eq: "euclidean_size (a * b) = euclidean_size b" by simp
have "a * b dvd b"
by (rule dvd_euclidean_size_eq_imp_dvd [OF _ eq])
(use assms in simp_all)
hence "a * b dvd 1 * b" by simp
with \<open>b \<noteq> 0\<close> have "is_unit a" by (subst (asm) dvd_times_right_cancel_iff)
with assms(3) show False by contradiction
qed
lemma dvd_imp_size_le:
assumes "a dvd b" "b \<noteq> 0"
shows "euclidean_size a \<le> euclidean_size b"
using assms by (auto simp: size_mult_mono)
lemma dvd_proper_imp_size_less:
assumes "a dvd b" "\<not> b dvd a" "b \<noteq> 0"
shows "euclidean_size a < euclidean_size b"
proof -
from assms(1) obtain c where "b = a * c" by (erule dvdE)
hence z: "b = c * a" by (simp add: mult.commute)
from z assms have "\<not>is_unit c" by (auto simp: mult.commute mult_unit_dvd_iff)
with z assms show ?thesis
by (auto intro!: euclidean_size_times_nonunit)
qed
lemma unit_imp_mod_eq_0:
"a mod b = 0" if "is_unit b"
using that by (simp add: mod_eq_0_iff_dvd unit_imp_dvd)
lemma mod_eq_self_iff_div_eq_0:
"a mod b = a \<longleftrightarrow> a div b = 0" (is "?P \<longleftrightarrow> ?Q")
proof
assume ?P
with div_mult_mod_eq [of a b] show ?Q
by auto
next
assume ?Q
with div_mult_mod_eq [of a b] show ?P
by simp
qed
lemma coprime_mod_left_iff [simp]:
"coprime (a mod b) b \<longleftrightarrow> coprime a b" if "b \<noteq> 0"
by (rule iffI; rule coprimeI)
(use that in \<open>auto dest!: dvd_mod_imp_dvd coprime_common_divisor simp add: dvd_mod_iff\<close>)
lemma coprime_mod_right_iff [simp]:
"coprime a (b mod a) \<longleftrightarrow> coprime a b" if "a \<noteq> 0"
using that coprime_mod_left_iff [of a b] by (simp add: ac_simps)
end
class euclidean_ring = idom_modulo + euclidean_semiring
begin
lemma dvd_diff_commute [ac_simps]:
"a dvd c - b \<longleftrightarrow> a dvd b - c"
proof -
have "a dvd c - b \<longleftrightarrow> a dvd (c - b) * - 1"
by (subst dvd_mult_unit_iff) simp_all
then show ?thesis
by simp
qed
end
subsection \<open>Euclidean (semi)rings with cancel rules\<close>
class euclidean_semiring_cancel = euclidean_semiring +
assumes div_mult_self1 [simp]: "b \<noteq> 0 \<Longrightarrow> (a + c * b) div b = c + a div b"
and div_mult_mult1 [simp]: "c \<noteq> 0 \<Longrightarrow> (c * a) div (c * b) = a div b"
begin
lemma div_mult_self2 [simp]:
assumes "b \<noteq> 0"
shows "(a + b * c) div b = c + a div b"
using assms div_mult_self1 [of b a c] by (simp add: mult.commute)
lemma div_mult_self3 [simp]:
assumes "b \<noteq> 0"
shows "(c * b + a) div b = c + a div b"
using assms by (simp add: add.commute)
lemma div_mult_self4 [simp]:
assumes "b \<noteq> 0"
shows "(b * c + a) div b = c + a div b"
using assms by (simp add: add.commute)
lemma mod_mult_self1 [simp]: "(a + c * b) mod b = a mod b"
proof (cases "b = 0")
case True then show ?thesis by simp
next
case False
have "a + c * b = (a + c * b) div b * b + (a + c * b) mod b"
by (simp add: div_mult_mod_eq)
also from False div_mult_self1 [of b a c] have
"\<dots> = (c + a div b) * b + (a + c * b) mod b"
by (simp add: algebra_simps)
finally have "a = a div b * b + (a + c * b) mod b"
by (simp add: add.commute [of a] add.assoc distrib_right)
then have "a div b * b + (a + c * b) mod b = a div b * b + a mod b"
by (simp add: div_mult_mod_eq)
then show ?thesis by simp
qed
lemma mod_mult_self2 [simp]:
"(a + b * c) mod b = a mod b"
by (simp add: mult.commute [of b])
lemma mod_mult_self3 [simp]:
"(c * b + a) mod b = a mod b"
by (simp add: add.commute)
lemma mod_mult_self4 [simp]:
"(b * c + a) mod b = a mod b"
by (simp add: add.commute)
lemma mod_mult_self1_is_0 [simp]:
"b * a mod b = 0"
using mod_mult_self2 [of 0 b a] by simp
lemma mod_mult_self2_is_0 [simp]:
"a * b mod b = 0"
using mod_mult_self1 [of 0 a b] by simp
lemma div_add_self1:
assumes "b \<noteq> 0"
shows "(b + a) div b = a div b + 1"
using assms div_mult_self1 [of b a 1] by (simp add: add.commute)
lemma div_add_self2:
assumes "b \<noteq> 0"
shows "(a + b) div b = a div b + 1"
using assms div_add_self1 [of b a] by (simp add: add.commute)
lemma mod_add_self1 [simp]:
"(b + a) mod b = a mod b"
using mod_mult_self1 [of a 1 b] by (simp add: add.commute)
lemma mod_add_self2 [simp]:
"(a + b) mod b = a mod b"
using mod_mult_self1 [of a 1 b] by simp
lemma mod_div_trivial [simp]:
"a mod b div b = 0"
proof (cases "b = 0")
assume "b = 0"
thus ?thesis by simp
next
assume "b \<noteq> 0"
hence "a div b + a mod b div b = (a mod b + a div b * b) div b"
by (rule div_mult_self1 [symmetric])
also have "\<dots> = a div b"
by (simp only: mod_div_mult_eq)
also have "\<dots> = a div b + 0"
by simp
finally show ?thesis
by (rule add_left_imp_eq)
qed
lemma mod_mod_trivial [simp]:
"a mod b mod b = a mod b"
proof -
have "a mod b mod b = (a mod b + a div b * b) mod b"
by (simp only: mod_mult_self1)
also have "\<dots> = a mod b"
by (simp only: mod_div_mult_eq)
finally show ?thesis .
qed
lemma mod_mod_cancel:
assumes "c dvd b"
shows "a mod b mod c = a mod c"
proof -
from \<open>c dvd b\<close> obtain k where "b = c * k"
by (rule dvdE)
have "a mod b mod c = a mod (c * k) mod c"
by (simp only: \<open>b = c * k\<close>)
also have "\<dots> = (a mod (c * k) + a div (c * k) * k * c) mod c"
by (simp only: mod_mult_self1)
also have "\<dots> = (a div (c * k) * (c * k) + a mod (c * k)) mod c"
by (simp only: ac_simps)
also have "\<dots> = a mod c"
by (simp only: div_mult_mod_eq)
finally show ?thesis .
qed
lemma div_mult_mult2 [simp]:
"c \<noteq> 0 \<Longrightarrow> (a * c) div (b * c) = a div b"
by (drule div_mult_mult1) (simp add: mult.commute)
lemma div_mult_mult1_if [simp]:
"(c * a) div (c * b) = (if c = 0 then 0 else a div b)"
by simp_all
lemma mod_mult_mult1:
"(c * a) mod (c * b) = c * (a mod b)"
proof (cases "c = 0")
case True then show ?thesis by simp
next
case False
from div_mult_mod_eq
have "((c * a) div (c * b)) * (c * b) + (c * a) mod (c * b) = c * a" .
with False have "c * ((a div b) * b + a mod b) + (c * a) mod (c * b)
= c * a + c * (a mod b)" by (simp add: algebra_simps)
with div_mult_mod_eq show ?thesis by simp
qed
lemma mod_mult_mult2:
"(a * c) mod (b * c) = (a mod b) * c"
using mod_mult_mult1 [of c a b] by (simp add: mult.commute)
lemma mult_mod_left: "(a mod b) * c = (a * c) mod (b * c)"
by (fact mod_mult_mult2 [symmetric])
lemma mult_mod_right: "c * (a mod b) = (c * a) mod (c * b)"
by (fact mod_mult_mult1 [symmetric])
lemma dvd_mod: "k dvd m \<Longrightarrow> k dvd n \<Longrightarrow> k dvd (m mod n)"
unfolding dvd_def by (auto simp add: mod_mult_mult1)
lemma div_plus_div_distrib_dvd_left:
"c dvd a \<Longrightarrow> (a + b) div c = a div c + b div c"
by (cases "c = 0") auto
lemma div_plus_div_distrib_dvd_right:
"c dvd b \<Longrightarrow> (a + b) div c = a div c + b div c"
using div_plus_div_distrib_dvd_left [of c b a]
by (simp add: ac_simps)
lemma sum_div_partition:
\<open>(\<Sum>a\<in>A. f a) div b = (\<Sum>a\<in>A \<inter> {a. b dvd f a}. f a div b) + (\<Sum>a\<in>A \<inter> {a. \<not> b dvd f a}. f a) div b\<close>
if \<open>finite A\<close>
proof -
have \<open>A = A \<inter> {a. b dvd f a} \<union> A \<inter> {a. \<not> b dvd f a}\<close>
by auto
then have \<open>(\<Sum>a\<in>A. f a) = (\<Sum>a\<in>A \<inter> {a. b dvd f a} \<union> A \<inter> {a. \<not> b dvd f a}. f a)\<close>
by simp
also have \<open>\<dots> = (\<Sum>a\<in>A \<inter> {a. b dvd f a}. f a) + (\<Sum>a\<in>A \<inter> {a. \<not> b dvd f a}. f a)\<close>
using \<open>finite A\<close> by (auto intro: sum.union_inter_neutral)
finally have *: \<open>sum f A = sum f (A \<inter> {a. b dvd f a}) + sum f (A \<inter> {a. \<not> b dvd f a})\<close> .
define B where B: \<open>B = A \<inter> {a. b dvd f a}\<close>
with \<open>finite A\<close> have \<open>finite B\<close> and \<open>a \<in> B \<Longrightarrow> b dvd f a\<close> for a
by simp_all
then have \<open>(\<Sum>a\<in>B. f a) div b = (\<Sum>a\<in>B. f a div b)\<close> and \<open>b dvd (\<Sum>a\<in>B. f a)\<close>
by induction (simp_all add: div_plus_div_distrib_dvd_left)
then show ?thesis using *
by (simp add: B div_plus_div_distrib_dvd_left)
qed
named_theorems mod_simps
text \<open>Addition respects modular equivalence.\<close>
lemma mod_add_left_eq [mod_simps]:
"(a mod c + b) mod c = (a + b) mod c"
proof -
have "(a + b) mod c = (a div c * c + a mod c + b) mod c"
by (simp only: div_mult_mod_eq)
also have "\<dots> = (a mod c + b + a div c * c) mod c"
by (simp only: ac_simps)
also have "\<dots> = (a mod c + b) mod c"
by (rule mod_mult_self1)
finally show ?thesis
by (rule sym)
qed
lemma mod_add_right_eq [mod_simps]:
"(a + b mod c) mod c = (a + b) mod c"
using mod_add_left_eq [of b c a] by (simp add: ac_simps)
lemma mod_add_eq:
"(a mod c + b mod c) mod c = (a + b) mod c"
by (simp add: mod_add_left_eq mod_add_right_eq)
lemma mod_sum_eq [mod_simps]:
"(\<Sum>i\<in>A. f i mod a) mod a = sum f A mod a"
proof (induct A rule: infinite_finite_induct)
case (insert i A)
then have "(\<Sum>i\<in>insert i A. f i mod a) mod a
= (f i mod a + (\<Sum>i\<in>A. f i mod a)) mod a"
by simp
also have "\<dots> = (f i + (\<Sum>i\<in>A. f i mod a) mod a) mod a"
by (simp add: mod_simps)
also have "\<dots> = (f i + (\<Sum>i\<in>A. f i) mod a) mod a"
by (simp add: insert.hyps)
finally show ?case
by (simp add: insert.hyps mod_simps)
qed simp_all
lemma mod_add_cong:
assumes "a mod c = a' mod c"
assumes "b mod c = b' mod c"
shows "(a + b) mod c = (a' + b') mod c"
proof -
have "(a mod c + b mod c) mod c = (a' mod c + b' mod c) mod c"
unfolding assms ..
then show ?thesis
by (simp add: mod_add_eq)
qed
text \<open>Multiplication respects modular equivalence.\<close>
lemma mod_mult_left_eq [mod_simps]:
"((a mod c) * b) mod c = (a * b) mod c"
proof -
have "(a * b) mod c = ((a div c * c + a mod c) * b) mod c"
by (simp only: div_mult_mod_eq)
also have "\<dots> = (a mod c * b + a div c * b * c) mod c"
by (simp only: algebra_simps)
also have "\<dots> = (a mod c * b) mod c"
by (rule mod_mult_self1)
finally show ?thesis
by (rule sym)
qed
lemma mod_mult_right_eq [mod_simps]:
"(a * (b mod c)) mod c = (a * b) mod c"
using mod_mult_left_eq [of b c a] by (simp add: ac_simps)
lemma mod_mult_eq:
"((a mod c) * (b mod c)) mod c = (a * b) mod c"
by (simp add: mod_mult_left_eq mod_mult_right_eq)
lemma mod_prod_eq [mod_simps]:
"(\<Prod>i\<in>A. f i mod a) mod a = prod f A mod a"
proof (induct A rule: infinite_finite_induct)
case (insert i A)
then have "(\<Prod>i\<in>insert i A. f i mod a) mod a
= (f i mod a * (\<Prod>i\<in>A. f i mod a)) mod a"
by simp
also have "\<dots> = (f i * ((\<Prod>i\<in>A. f i mod a) mod a)) mod a"
by (simp add: mod_simps)
also have "\<dots> = (f i * ((\<Prod>i\<in>A. f i) mod a)) mod a"
by (simp add: insert.hyps)
finally show ?case
by (simp add: insert.hyps mod_simps)
qed simp_all
lemma mod_mult_cong:
assumes "a mod c = a' mod c"
assumes "b mod c = b' mod c"
shows "(a * b) mod c = (a' * b') mod c"
proof -
have "(a mod c * (b mod c)) mod c = (a' mod c * (b' mod c)) mod c"
unfolding assms ..
then show ?thesis
by (simp add: mod_mult_eq)
qed
text \<open>Exponentiation respects modular equivalence.\<close>
lemma power_mod [mod_simps]:
"((a mod b) ^ n) mod b = (a ^ n) mod b"
proof (induct n)
case 0
then show ?case by simp
next
case (Suc n)
have "(a mod b) ^ Suc n mod b = (a mod b) * ((a mod b) ^ n mod b) mod b"
by (simp add: mod_mult_right_eq)
with Suc show ?case
by (simp add: mod_mult_left_eq mod_mult_right_eq)
qed
lemma power_diff_power_eq:
\<open>a ^ m div a ^ n = (if n \<le> m then a ^ (m - n) else 1 div a ^ (n - m))\<close>
if \<open>a \<noteq> 0\<close>
proof (cases \<open>n \<le> m\<close>)
case True
with that power_diff [symmetric, of a n m] show ?thesis by simp
next
case False
then obtain q where n: \<open>n = m + Suc q\<close>
by (auto simp add: not_le dest: less_imp_Suc_add)
then have \<open>a ^ m div a ^ n = (a ^ m * 1) div (a ^ m * a ^ Suc q)\<close>
by (simp add: power_add ac_simps)
moreover from that have \<open>a ^ m \<noteq> 0\<close>
by simp
ultimately have \<open>a ^ m div a ^ n = 1 div a ^ Suc q\<close>
by (subst (asm) div_mult_mult1) simp
with False n show ?thesis
by simp
qed
end
class euclidean_ring_cancel = euclidean_ring + euclidean_semiring_cancel
begin
subclass idom_divide ..
lemma div_minus_minus [simp]: "(- a) div (- b) = a div b"
using div_mult_mult1 [of "- 1" a b] by simp
lemma mod_minus_minus [simp]: "(- a) mod (- b) = - (a mod b)"
using mod_mult_mult1 [of "- 1" a b] by simp
lemma div_minus_right: "a div (- b) = (- a) div b"
using div_minus_minus [of "- a" b] by simp
lemma mod_minus_right: "a mod (- b) = - ((- a) mod b)"
using mod_minus_minus [of "- a" b] by simp
lemma div_minus1_right [simp]: "a div (- 1) = - a"
using div_minus_right [of a 1] by simp
lemma mod_minus1_right [simp]: "a mod (- 1) = 0"
using mod_minus_right [of a 1] by simp
text \<open>Negation respects modular equivalence.\<close>
lemma mod_minus_eq [mod_simps]:
"(- (a mod b)) mod b = (- a) mod b"
proof -
have "(- a) mod b = (- (a div b * b + a mod b)) mod b"
by (simp only: div_mult_mod_eq)
also have "\<dots> = (- (a mod b) + - (a div b) * b) mod b"
by (simp add: ac_simps)
also have "\<dots> = (- (a mod b)) mod b"
by (rule mod_mult_self1)
finally show ?thesis
by (rule sym)
qed
lemma mod_minus_cong:
assumes "a mod b = a' mod b"
shows "(- a) mod b = (- a') mod b"
proof -
have "(- (a mod b)) mod b = (- (a' mod b)) mod b"
unfolding assms ..
then show ?thesis
by (simp add: mod_minus_eq)
qed
text \<open>Subtraction respects modular equivalence.\<close>
lemma mod_diff_left_eq [mod_simps]:
"(a mod c - b) mod c = (a - b) mod c"
using mod_add_cong [of a c "a mod c" "- b" "- b"]
by simp
lemma mod_diff_right_eq [mod_simps]:
"(a - b mod c) mod c = (a - b) mod c"
using mod_add_cong [of a c a "- b" "- (b mod c)"] mod_minus_cong [of "b mod c" c b]
by simp
lemma mod_diff_eq:
"(a mod c - b mod c) mod c = (a - b) mod c"
using mod_add_cong [of a c "a mod c" "- b" "- (b mod c)"] mod_minus_cong [of "b mod c" c b]
by simp
lemma mod_diff_cong:
assumes "a mod c = a' mod c"
assumes "b mod c = b' mod c"
shows "(a - b) mod c = (a' - b') mod c"
using assms mod_add_cong [of a c a' "- b" "- b'"] mod_minus_cong [of b c "b'"]
by simp
lemma minus_mod_self2 [simp]:
"(a - b) mod b = a mod b"
using mod_diff_right_eq [of a b b]
by (simp add: mod_diff_right_eq)
lemma minus_mod_self1 [simp]:
"(b - a) mod b = - a mod b"
using mod_add_self2 [of "- a" b] by simp
lemma mod_eq_dvd_iff:
"a mod c = b mod c \<longleftrightarrow> c dvd a - b" (is "?P \<longleftrightarrow> ?Q")
proof
assume ?P
then have "(a mod c - b mod c) mod c = 0"
by simp
then show ?Q
by (simp add: dvd_eq_mod_eq_0 mod_simps)
next
assume ?Q
then obtain d where d: "a - b = c * d" ..
then have "a = c * d + b"
by (simp add: algebra_simps)
then show ?P by simp
qed
lemma mod_eqE:
assumes "a mod c = b mod c"
obtains d where "b = a + c * d"
proof -
from assms have "c dvd a - b"
by (simp add: mod_eq_dvd_iff)
then obtain d where "a - b = c * d" ..
then have "b = a + c * - d"
by (simp add: algebra_simps)
with that show thesis .
qed
lemma invertible_coprime:
"coprime a c" if "a * b mod c = 1"
by (rule coprimeI) (use that dvd_mod_iff [of _ c "a * b"] in auto)
end
subsection \<open>Uniquely determined division\<close>
class unique_euclidean_semiring = euclidean_semiring +
assumes euclidean_size_mult: \<open>euclidean_size (a * b) = euclidean_size a * euclidean_size b\<close>
fixes division_segment :: \<open>'a \<Rightarrow> 'a\<close>
assumes is_unit_division_segment [simp]: \<open>is_unit (division_segment a)\<close>
and division_segment_mult:
\<open>a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> division_segment (a * b) = division_segment a * division_segment b\<close>
and division_segment_mod:
\<open>b \<noteq> 0 \<Longrightarrow> \<not> b dvd a \<Longrightarrow> division_segment (a mod b) = division_segment b\<close>
assumes div_bounded:
\<open>b \<noteq> 0 \<Longrightarrow> division_segment r = division_segment b
\<Longrightarrow> euclidean_size r < euclidean_size b
\<Longrightarrow> (q * b + r) div b = q\<close>
begin
lemma division_segment_not_0 [simp]:
\<open>division_segment a \<noteq> 0\<close>
using is_unit_division_segment [of a] is_unitE [of \<open>division_segment a\<close>] by blast
lemma euclidean_relationI [case_names by0 divides euclidean_relation]:
\<open>(a div b, a mod b) = (q, r)\<close>
if by0: \<open>b = 0 \<Longrightarrow> q = 0 \<and> r = a\<close>
and divides: \<open>b \<noteq> 0 \<Longrightarrow> b dvd a \<Longrightarrow> r = 0 \<and> a = q * b\<close>
and euclidean_relation: \<open>b \<noteq> 0 \<Longrightarrow> \<not> b dvd a \<Longrightarrow> division_segment r = division_segment b
\<and> euclidean_size r < euclidean_size b \<and> a = q * b + r\<close>
proof (cases \<open>b = 0\<close>)
case True
with by0 show ?thesis
by simp
next
case False
show ?thesis
proof (cases \<open>b dvd a\<close>)
case True
with \<open>b \<noteq> 0\<close> divides
show ?thesis
by simp
next
case False
with \<open>b \<noteq> 0\<close> euclidean_relation
have \<open>division_segment r = division_segment b\<close>
\<open>euclidean_size r < euclidean_size b\<close> \<open>a = q * b + r\<close>
by simp_all
from \<open>b \<noteq> 0\<close> \<open>division_segment r = division_segment b\<close>
\<open>euclidean_size r < euclidean_size b\<close>
have \<open>(q * b + r) div b = q\<close>
by (rule div_bounded)
with \<open>a = q * b + r\<close>
have \<open>q = a div b\<close>
by simp
from \<open>a = q * b + r\<close>
have \<open>a div b * b + a mod b = q * b + r\<close>
by (simp add: div_mult_mod_eq)
with \<open>q = a div b\<close>
have \<open>q * b + a mod b = q * b + r\<close>
by simp
then have \<open>r = a mod b\<close>
by simp
with \<open>q = a div b\<close>
show ?thesis
by simp
qed
qed
subclass euclidean_semiring_cancel
proof
fix a b c
assume \<open>b \<noteq> 0\<close>
have \<open>((a + c * b) div b, (a + c * b) mod b) = (c + a div b, a mod b)\<close>
proof (induction rule: euclidean_relationI)
case by0
with \<open>b \<noteq> 0\<close>
show ?case
by simp
next
case divides
then show ?case
by (simp add: algebra_simps dvd_add_left_iff)
next
case euclidean_relation
then have \<open>\<not> b dvd a\<close>
by (simp add: dvd_add_left_iff)
have \<open>a mod b + (b * c + b * (a div b)) = b * c + ((a div b) * b + a mod b)\<close>
by (simp add: ac_simps)
with \<open>b \<noteq> 0\<close> have *: \<open>a mod b + (b * c + b * (a div b)) = b * c + a\<close>
by (simp add: div_mult_mod_eq)
from \<open>\<not> b dvd a\<close> euclidean_relation show ?case
by (simp_all add: algebra_simps division_segment_mod mod_size_less *)
qed
then show \<open>(a + c * b) div b = c + a div b\<close>
by simp
next
fix a b c
assume \<open>c \<noteq> 0\<close>
have \<open>((c * a) div (c * b), (c * a) mod (c * b)) = (a div b, c * (a mod b))\<close>
proof (induction rule: euclidean_relationI)
case by0
with \<open>c \<noteq> 0\<close> show ?case
by simp
next
case divides
then show ?case
by (auto simp add: algebra_simps)
next
case euclidean_relation
then have \<open>b \<noteq> 0\<close> \<open>a mod b \<noteq> 0\<close>
by (simp_all add: mod_eq_0_iff_dvd)
have \<open>c * (a mod b) + b * (c * (a div b)) = c * ((a div b) * b + a mod b)\<close>
by (simp add: algebra_simps)
with \<open>b \<noteq> 0\<close> have *: \<open>c * (a mod b) + b * (c * (a div b)) = c * a\<close>
by (simp add: div_mult_mod_eq)
from \<open>b \<noteq> 0\<close> \<open>c \<noteq> 0\<close> have \<open>euclidean_size c * euclidean_size (a mod b)
< euclidean_size c * euclidean_size b\<close>
using mod_size_less [of b a] by simp
with euclidean_relation \<open>b \<noteq> 0\<close> \<open>a mod b \<noteq> 0\<close> show ?case
by (simp add: algebra_simps division_segment_mult division_segment_mod euclidean_size_mult *)
qed
then show \<open>(c * a) div (c * b) = a div b\<close>
by simp
qed
lemma div_eq_0_iff:
\<open>a div b = 0 \<longleftrightarrow> euclidean_size a < euclidean_size b \<or> b = 0\<close> (is "_ \<longleftrightarrow> ?P")
if \<open>division_segment a = division_segment b\<close>
proof (cases \<open>a = 0 \<or> b = 0\<close>)
case True
then show ?thesis by auto
next
case False
then have \<open>a \<noteq> 0\<close> \<open>b \<noteq> 0\<close>
by simp_all
have \<open>a div b = 0 \<longleftrightarrow> euclidean_size a < euclidean_size b\<close>
proof
assume \<open>a div b = 0\<close>
then have \<open>a mod b = a\<close>
using div_mult_mod_eq [of a b] by simp
with \<open>b \<noteq> 0\<close> mod_size_less [of b a]
show \<open>euclidean_size a < euclidean_size b\<close>
by simp
next
assume \<open>euclidean_size a < euclidean_size b\<close>
have \<open>(a div b, a mod b) = (0, a)\<close>
proof (induction rule: euclidean_relationI)
case by0
show ?case
by simp
next
case divides
with \<open>euclidean_size a < euclidean_size b\<close> show ?case
using dvd_imp_size_le [of b a] \<open>a \<noteq> 0\<close> by simp
next
case euclidean_relation
with \<open>euclidean_size a < euclidean_size b\<close> that
show ?case
by simp
qed
then show \<open>a div b = 0\<close>
by simp
qed
with \<open>b \<noteq> 0\<close> show ?thesis
by simp
qed
lemma div_mult1_eq:
\<open>(a * b) div c = a * (b div c) + a * (b mod c) div c\<close>
proof -
have *: \<open>(a * b) mod c + (a * (c * (b div c)) + c * (a * (b mod c) div c)) = a * b\<close> (is \<open>?A + (?B + ?C) = _\<close>)
proof -
have \<open>?A = a * (b mod c) mod c\<close>
by (simp add: mod_mult_right_eq)
then have \<open>?C + ?A = a * (b mod c)\<close>
by (simp add: mult_div_mod_eq)
then have \<open>?B + (?C + ?A) = a * (c * (b div c) + (b mod c))\<close>
by (simp add: algebra_simps)
also have \<open>\<dots> = a * b\<close>
by (simp add: mult_div_mod_eq)
finally show ?thesis
by (simp add: algebra_simps)
qed
have \<open>((a * b) div c, (a * b) mod c) = (a * (b div c) + a * (b mod c) div c, (a * b) mod c)\<close>
proof (induction rule: euclidean_relationI)
case by0
then show ?case by simp
next
case divides
with * show ?case
by (simp add: algebra_simps)
next
case euclidean_relation
with * show ?case
by (simp add: division_segment_mod mod_size_less algebra_simps)
qed
then show ?thesis
by simp
qed
lemma div_add1_eq:
\<open>(a + b) div c = a div c + b div c + (a mod c + b mod c) div c\<close>
proof -
have *: \<open>(a + b) mod c + (c * (a div c) + (c * (b div c) + c * ((a mod c + b mod c) div c))) = a + b\<close>
(is \<open>?A + (?B + (?C + ?D)) = _\<close>)
proof -
have \<open>?A + (?B + (?C + ?D)) = ?A + ?D + (?B + ?C)\<close>
by (simp add: ac_simps)
also have \<open>?A + ?D = (a mod c + b mod c) mod c + ?D\<close>
by (simp add: mod_add_eq)
also have \<open>\<dots> = a mod c + b mod c\<close>
by (simp add: mod_mult_div_eq)
finally have \<open>?A + (?B + (?C + ?D)) = (a mod c + ?B) + (b mod c + ?C)\<close>
by (simp add: ac_simps)
then show ?thesis
by (simp add: mod_mult_div_eq)
qed
have \<open>((a + b) div c, (a + b) mod c) = (a div c + b div c + (a mod c + b mod c) div c, (a + b) mod c)\<close>
proof (induction rule: euclidean_relationI)
case by0
then show ?case
by simp
next
case divides
with * show ?case
by (simp add: algebra_simps)
next
case euclidean_relation
with * show ?case
by (simp add: division_segment_mod mod_size_less algebra_simps)
qed
then show ?thesis
by simp
qed
end
class unique_euclidean_ring = euclidean_ring + unique_euclidean_semiring
begin
subclass euclidean_ring_cancel ..
end
subsection \<open>Division on \<^typ>\<open>nat\<close>\<close>
instantiation nat :: normalization_semidom
begin
definition normalize_nat :: \<open>nat \<Rightarrow> nat\<close>
where [simp]: \<open>normalize = (id :: nat \<Rightarrow> nat)\<close>
definition unit_factor_nat :: \<open>nat \<Rightarrow> nat\<close>
where \<open>unit_factor n = of_bool (n > 0)\<close> for n :: nat
lemma unit_factor_simps [simp]:
\<open>unit_factor 0 = (0::nat)\<close>
\<open>unit_factor (Suc n) = 1\<close>
by (simp_all add: unit_factor_nat_def)
definition divide_nat :: \<open>nat \<Rightarrow> nat \<Rightarrow> nat\<close>
where \<open>m div n = (if n = 0 then 0 else Max {k. k * n \<le> m})\<close> for m n :: nat
instance
by standard (auto simp add: divide_nat_def ac_simps unit_factor_nat_def intro: Max_eqI)
end
lemma coprime_Suc_0_left [simp]:
"coprime (Suc 0) n"
using coprime_1_left [of n] by simp
lemma coprime_Suc_0_right [simp]:
"coprime n (Suc 0)"
using coprime_1_right [of n] by simp
lemma coprime_common_divisor_nat: "coprime a b \<Longrightarrow> x dvd a \<Longrightarrow> x dvd b \<Longrightarrow> x = 1"
for a b :: nat
by (drule coprime_common_divisor [of _ _ x]) simp_all
instantiation nat :: unique_euclidean_semiring
begin
definition euclidean_size_nat :: \<open>nat \<Rightarrow> nat\<close>
where [simp]: \<open>euclidean_size_nat = id\<close>
definition division_segment_nat :: \<open>nat \<Rightarrow> nat\<close>
where [simp]: \<open>division_segment n = 1\<close> for n :: nat
definition modulo_nat :: \<open>nat \<Rightarrow> nat \<Rightarrow> nat\<close>
where \<open>m mod n = m - (m div n * n)\<close> for m n :: nat
instance proof
fix m n :: nat
have ex: "\<exists>k. k * n \<le> l" for l :: nat
by (rule exI [of _ 0]) simp
have fin: "finite {k. k * n \<le> l}" if "n > 0" for l
proof -
from that have "{k. k * n \<le> l} \<subseteq> {k. k \<le> l}"
by (cases n) auto
then show ?thesis
by (rule finite_subset) simp
qed
have mult_div_unfold: "n * (m div n) = Max {l. l \<le> m \<and> n dvd l}"
proof (cases "n = 0")
case True
moreover have "{l. l = 0 \<and> l \<le> m} = {0::nat}"
by auto
ultimately show ?thesis
by simp
next
case False
with ex [of m] fin have "n * Max {k. k * n \<le> m} = Max (times n ` {k. k * n \<le> m})"
by (auto simp add: nat_mult_max_right intro: hom_Max_commute)
also have "times n ` {k. k * n \<le> m} = {l. l \<le> m \<and> n dvd l}"
by (auto simp add: ac_simps elim!: dvdE)
finally show ?thesis
using False by (simp add: divide_nat_def ac_simps)
qed
have less_eq: "m div n * n \<le> m"
by (auto simp add: mult_div_unfold ac_simps intro: Max.boundedI)
then show "m div n * n + m mod n = m"
by (simp add: modulo_nat_def)
assume "n \<noteq> 0"
show "euclidean_size (m mod n) < euclidean_size n"
proof -
have "m < Suc (m div n) * n"
proof (rule ccontr)
assume "\<not> m < Suc (m div n) * n"
then have "Suc (m div n) * n \<le> m"
by (simp add: not_less)
moreover from \<open>n \<noteq> 0\<close> have "Max {k. k * n \<le> m} < Suc (m div n)"
by (simp add: divide_nat_def)
with \<open>n \<noteq> 0\<close> ex fin have "\<And>k. k * n \<le> m \<Longrightarrow> k < Suc (m div n)"
by auto
ultimately have "Suc (m div n) < Suc (m div n)"
by blast
then show False
by simp
qed
with \<open>n \<noteq> 0\<close> show ?thesis
by (simp add: modulo_nat_def)
qed
show "euclidean_size m \<le> euclidean_size (m * n)"
using \<open>n \<noteq> 0\<close> by (cases n) simp_all
fix q r :: nat
show "(q * n + r) div n = q" if "euclidean_size r < euclidean_size n"
proof -
from that have "r < n"
by simp
have "k \<le> q" if "k * n \<le> q * n + r" for k
proof (rule ccontr)
assume "\<not> k \<le> q"
then have "q < k"
by simp
then obtain l where "k = Suc (q + l)"
by (auto simp add: less_iff_Suc_add)
with \<open>r < n\<close> that show False
by (simp add: algebra_simps)
qed
with \<open>n \<noteq> 0\<close> ex fin show ?thesis
by (auto simp add: divide_nat_def Max_eq_iff)
qed
qed simp_all
end
lemma euclidean_relation_natI [case_names by0 divides euclidean_relation]:
\<open>(m div n, m mod n) = (q, r)\<close>
if by0: \<open>n = 0 \<Longrightarrow> q = 0 \<and> r = m\<close>
and divides: \<open>n > 0 \<Longrightarrow> n dvd m \<Longrightarrow> r = 0 \<and> m = q * n\<close>
and euclidean_relation: \<open>n > 0 \<Longrightarrow> \<not> n dvd m \<Longrightarrow> r < n \<and> m = q * n + r\<close> for m n q r :: nat
by (rule euclidean_relationI) (use that in simp_all)
lemma div_nat_eqI:
\<open>m div n = q\<close> if \<open>n * q \<le> m\<close> and \<open>m < n * Suc q\<close> for m n q :: nat
proof -
have \<open>(m div n, m mod n) = (q, m - n * q)\<close>
proof (induction rule: euclidean_relation_natI)
case by0
with that show ?case
by simp
next
case divides
from \<open>n dvd m\<close> obtain s where \<open>m = n * s\<close> ..
with \<open>n > 0\<close> that have \<open>s < Suc q\<close>
by (simp only: mult_less_cancel1)
with \<open>m = n * s\<close> \<open>n > 0\<close> that have \<open>q = s\<close>
by simp
with \<open>m = n * s\<close> show ?case
by (simp add: ac_simps)
next
case euclidean_relation
with that show ?case
by (simp add: ac_simps)
qed
then show ?thesis
by simp
qed
lemma mod_nat_eqI:
\<open>m mod n = r\<close> if \<open>r < n\<close> and \<open>r \<le> m\<close> and \<open>n dvd m - r\<close> for m n r :: nat
proof -
have \<open>(m div n, m mod n) = ((m - r) div n, r)\<close>
proof (induction rule: euclidean_relation_natI)
case by0
with that show ?case
by simp
next
case divides
from that dvd_minus_add [of r \<open>m\<close> 1 n]
have \<open>n dvd m + (n - r)\<close>
by simp
with divides have \<open>n dvd n - r\<close>
by (simp add: dvd_add_right_iff)
then have \<open>n \<le> n - r\<close>
by (rule dvd_imp_le) (use \<open>r < n\<close> in simp)
with \<open>n > 0\<close> have \<open>r = 0\<close>
by simp
with \<open>n > 0\<close> that show ?case
by simp
next
case euclidean_relation
with that show ?case
by (simp add: ac_simps)
qed
then show ?thesis
by simp
qed
text \<open>Tool support\<close>
ML \<open>
structure Cancel_Div_Mod_Nat = Cancel_Div_Mod
(
val div_name = \<^const_name>\<open>divide\<close>;
val mod_name = \<^const_name>\<open>modulo\<close>;
val mk_binop = HOLogic.mk_binop;
val dest_plus = HOLogic.dest_bin \<^const_name>\<open>Groups.plus\<close> HOLogic.natT;
val mk_sum = Arith_Data.mk_sum;
fun dest_sum tm =
if HOLogic.is_zero tm then []
else
(case try HOLogic.dest_Suc tm of
SOME t => HOLogic.Suc_zero :: dest_sum t
| NONE =>
(case try dest_plus tm of
SOME (t, u) => dest_sum t @ dest_sum u
| NONE => [tm]));
val div_mod_eqs = map mk_meta_eq @{thms cancel_div_mod_rules};
val prove_eq_sums = Arith_Data.prove_conv2 all_tac
(Arith_Data.simp_all_tac @{thms add_0_left add_0_right ac_simps})
)
\<close>
simproc_setup cancel_div_mod_nat ("(m::nat) + n") =
\<open>K Cancel_Div_Mod_Nat.proc\<close>
lemma div_mult_self_is_m [simp]:
"m * n div n = m" if "n > 0" for m n :: nat
using that by simp
lemma div_mult_self1_is_m [simp]:
"n * m div n = m" if "n > 0" for m n :: nat
using that by simp
lemma mod_less_divisor [simp]:
"m mod n < n" if "n > 0" for m n :: nat
using mod_size_less [of n m] that by simp
lemma mod_le_divisor [simp]:
"m mod n \<le> n" if "n > 0" for m n :: nat
using that by (auto simp add: le_less)
lemma div_times_less_eq_dividend [simp]:
"m div n * n \<le> m" for m n :: nat
by (simp add: minus_mod_eq_div_mult [symmetric])
lemma times_div_less_eq_dividend [simp]:
"n * (m div n) \<le> m" for m n :: nat
using div_times_less_eq_dividend [of m n]
by (simp add: ac_simps)
lemma dividend_less_div_times:
"m < n + (m div n) * n" if "0 < n" for m n :: nat
proof -
from that have "m mod n < n"
by simp
then show ?thesis
by (simp add: minus_mod_eq_div_mult [symmetric])
qed
lemma dividend_less_times_div:
"m < n + n * (m div n)" if "0 < n" for m n :: nat
using dividend_less_div_times [of n m] that
by (simp add: ac_simps)
lemma mod_Suc_le_divisor [simp]:
"m mod Suc n \<le> n"
using mod_less_divisor [of "Suc n" m] by arith
lemma mod_less_eq_dividend [simp]:
"m mod n \<le> m" for m n :: nat
proof (rule add_leD2)
from div_mult_mod_eq have "m div n * n + m mod n = m" .
then show "m div n * n + m mod n \<le> m" by auto
qed
lemma
div_less [simp]: "m div n = 0"
and mod_less [simp]: "m mod n = m"
if "m < n" for m n :: nat
using that by (auto intro: div_nat_eqI mod_nat_eqI)
lemma split_div:
\<open>P (m div n) \<longleftrightarrow>
(n = 0 \<longrightarrow> P 0) \<and>
(n \<noteq> 0 \<longrightarrow> (\<forall>i j. j < n \<and> m = n * i + j \<longrightarrow> P i))\<close> (is ?div)
and split_mod:
\<open>Q (m mod n) \<longleftrightarrow>
(n = 0 \<longrightarrow> Q m) \<and>
(n \<noteq> 0 \<longrightarrow> (\<forall>i j. j < n \<and> m = n * i + j \<longrightarrow> Q j))\<close> (is ?mod)
for m n :: nat
proof -
have *: \<open>R (m div n) (m mod n) \<longleftrightarrow>
(n = 0 \<longrightarrow> R 0 m) \<and>
(n \<noteq> 0 \<longrightarrow> (\<forall>i j. j < n \<and> m = n * i + j \<longrightarrow> R i j))\<close> for R
by (cases \<open>n = 0\<close>) auto
from * [of \<open>\<lambda>q _. P q\<close>] show ?div .
from * [of \<open>\<lambda>_ r. Q r\<close>] show ?mod .
qed
declare split_div [of _ _ \<open>numeral n\<close>, linarith_split] for n
declare split_mod [of _ _ \<open>numeral n\<close>, linarith_split] for n
lemma split_div':
"P (m div n) \<longleftrightarrow> n = 0 \<and> P 0 \<or> (\<exists>q. (n * q \<le> m \<and> m < n * Suc q) \<and> P q)"
proof (cases "n = 0")
case True
then show ?thesis
by simp
next
case False
then have "n * q \<le> m \<and> m < n * Suc q \<longleftrightarrow> m div n = q" for q
by (auto intro: div_nat_eqI dividend_less_times_div)
then show ?thesis
by auto
qed
lemma le_div_geq:
"m div n = Suc ((m - n) div n)" if "0 < n" and "n \<le> m" for m n :: nat
proof -
from \<open>n \<le> m\<close> obtain q where "m = n + q"
by (auto simp add: le_iff_add)
with \<open>0 < n\<close> show ?thesis
by (simp add: div_add_self1)
qed
lemma le_mod_geq:
"m mod n = (m - n) mod n" if "n \<le> m" for m n :: nat
proof -
from \<open>n \<le> m\<close> obtain q where "m = n + q"
by (auto simp add: le_iff_add)
then show ?thesis
by simp
qed
lemma div_if:
"m div n = (if m < n \<or> n = 0 then 0 else Suc ((m - n) div n))"
by (simp add: le_div_geq)
lemma mod_if:
"m mod n = (if m < n then m else (m - n) mod n)" for m n :: nat
by (simp add: le_mod_geq)
lemma div_eq_0_iff:
"m div n = 0 \<longleftrightarrow> m < n \<or> n = 0" for m n :: nat
by (simp add: div_eq_0_iff)
lemma div_greater_zero_iff:
"m div n > 0 \<longleftrightarrow> n \<le> m \<and> n > 0" for m n :: nat
using div_eq_0_iff [of m n] by auto
lemma mod_greater_zero_iff_not_dvd:
"m mod n > 0 \<longleftrightarrow> \<not> n dvd m" for m n :: nat
by (simp add: dvd_eq_mod_eq_0)
lemma div_by_Suc_0 [simp]:
"m div Suc 0 = m"
using div_by_1 [of m] by simp
lemma mod_by_Suc_0 [simp]:
"m mod Suc 0 = 0"
using mod_by_1 [of m] by simp
lemma div2_Suc_Suc [simp]:
"Suc (Suc m) div 2 = Suc (m div 2)"
by (simp add: numeral_2_eq_2 le_div_geq)
lemma Suc_n_div_2_gt_zero [simp]:
"0 < Suc n div 2" if "n > 0" for n :: nat
using that by (cases n) simp_all
lemma div_2_gt_zero [simp]:
"0 < n div 2" if "Suc 0 < n" for n :: nat
using that Suc_n_div_2_gt_zero [of "n - 1"] by simp
lemma mod2_Suc_Suc [simp]:
"Suc (Suc m) mod 2 = m mod 2"
by (simp add: numeral_2_eq_2 le_mod_geq)
lemma add_self_div_2 [simp]:
"(m + m) div 2 = m" for m :: nat
by (simp add: mult_2 [symmetric])
lemma add_self_mod_2 [simp]:
"(m + m) mod 2 = 0" for m :: nat
by (simp add: mult_2 [symmetric])
lemma mod2_gr_0 [simp]:
"0 < m mod 2 \<longleftrightarrow> m mod 2 = 1" for m :: nat
proof -
have "m mod 2 < 2"
by (rule mod_less_divisor) simp
then have "m mod 2 = 0 \<or> m mod 2 = 1"
by arith
then show ?thesis
by auto
qed
lemma mod_Suc_eq [mod_simps]:
"Suc (m mod n) mod n = Suc m mod n"
proof -
have "(m mod n + 1) mod n = (m + 1) mod n"
by (simp only: mod_simps)
then show ?thesis
by simp
qed
lemma mod_Suc_Suc_eq [mod_simps]:
"Suc (Suc (m mod n)) mod n = Suc (Suc m) mod n"
proof -
have "(m mod n + 2) mod n = (m + 2) mod n"
by (simp only: mod_simps)
then show ?thesis
by simp
qed
lemma
Suc_mod_mult_self1 [simp]: "Suc (m + k * n) mod n = Suc m mod n"
and Suc_mod_mult_self2 [simp]: "Suc (m + n * k) mod n = Suc m mod n"
and Suc_mod_mult_self3 [simp]: "Suc (k * n + m) mod n = Suc m mod n"
and Suc_mod_mult_self4 [simp]: "Suc (n * k + m) mod n = Suc m mod n"
by (subst mod_Suc_eq [symmetric], simp add: mod_simps)+
lemma Suc_0_mod_eq [simp]:
"Suc 0 mod n = of_bool (n \<noteq> Suc 0)"
by (cases n) simp_all
lemma div_mult2_eq:
\<open>m div (n * q) = (m div n) div q\<close> (is ?Q)
and mod_mult2_eq:
\<open>m mod (n * q) = n * (m div n mod q) + m mod n\<close> (is ?R)
for m n q :: nat
proof -
have \<open>(m div (n * q), m mod (n * q)) = ((m div n) div q, n * (m div n mod q) + m mod n)\<close>
proof (induction rule: euclidean_relation_natI)
case by0
then show ?case
by auto
next
case divides
from \<open>n * q dvd m\<close> obtain t where \<open>m = n * q * t\<close> ..
with \<open>n * q > 0\<close> show ?case
by (simp add: algebra_simps)
next
case euclidean_relation
then have \<open>n > 0\<close> \<open>q > 0\<close>
by simp_all
from \<open>n > 0\<close> have \<open>m mod n < n\<close>
by (rule mod_less_divisor)
from \<open>q > 0\<close> have \<open>m div n mod q < q\<close>
by (rule mod_less_divisor)
then obtain s where \<open>q = Suc (m div n mod q + s)\<close>
by (blast dest: less_imp_Suc_add)
moreover have \<open>m mod n + n * (m div n mod q) < n * Suc (m div n mod q + s)\<close>
using \<open>m mod n < n\<close> by (simp add: add_mult_distrib2)
ultimately have \<open>m mod n + n * (m div n mod q) < n * q\<close>
by simp
then show ?case
by (simp add: algebra_simps flip: add_mult_distrib2)
qed
then show ?Q and ?R
by simp_all
qed
lemma div_le_mono:
"m div k \<le> n div k" if "m \<le> n" for m n k :: nat
proof -
from that obtain q where "n = m + q"
by (auto simp add: le_iff_add)
then show ?thesis
by (simp add: div_add1_eq [of m q k])
qed
text \<open>Antimonotonicity of \<^const>\<open>divide\<close> in second argument\<close>
lemma div_le_mono2:
"k div n \<le> k div m" if "0 < m" and "m \<le> n" for m n k :: nat
using that proof (induct k arbitrary: m rule: less_induct)
case (less k)
show ?case
proof (cases "n \<le> k")
case False
then show ?thesis
by simp
next
case True
have "(k - n) div n \<le> (k - m) div n"
using less.prems
by (blast intro: div_le_mono diff_le_mono2)
also have "\<dots> \<le> (k - m) div m"
using \<open>n \<le> k\<close> less.prems less.hyps [of "k - m" m]
by simp
finally show ?thesis
using \<open>n \<le> k\<close> less.prems
by (simp add: le_div_geq)
qed
qed
lemma div_le_dividend [simp]:
"m div n \<le> m" for m n :: nat
using div_le_mono2 [of 1 n m] by (cases "n = 0") simp_all
lemma div_less_dividend [simp]:
"m div n < m" if "1 < n" and "0 < m" for m n :: nat
using that proof (induct m rule: less_induct)
case (less m)
show ?case
proof (cases "n < m")
case False
with less show ?thesis
by (cases "n = m") simp_all
next
case True
then show ?thesis
using less.hyps [of "m - n"] less.prems
by (simp add: le_div_geq)
qed
qed
lemma div_eq_dividend_iff:
"m div n = m \<longleftrightarrow> n = 1" if "m > 0" for m n :: nat
proof
assume "n = 1"
then show "m div n = m"
by simp
next
assume P: "m div n = m"
show "n = 1"
proof (rule ccontr)
have "n \<noteq> 0"
by (rule ccontr) (use that P in auto)
moreover assume "n \<noteq> 1"
ultimately have "n > 1"
by simp
with that have "m div n < m"
by simp
with P show False
by simp
qed
qed
lemma less_mult_imp_div_less:
"m div n < i" if "m < i * n" for m n i :: nat
proof -
from that have "i * n > 0"
by (cases "i * n = 0") simp_all
then have "i > 0" and "n > 0"
by simp_all
have "m div n * n \<le> m"
by simp
then have "m div n * n < i * n"
using that by (rule le_less_trans)
with \<open>n > 0\<close> show ?thesis
by simp
qed
lemma div_less_iff_less_mult:
\<open>m div q < n \<longleftrightarrow> m < n * q\<close> (is \<open>?P \<longleftrightarrow> ?Q\<close>)
if \<open>q > 0\<close> for m n q :: nat
proof
assume ?Q then show ?P
by (rule less_mult_imp_div_less)
next
assume ?P
then obtain h where \<open>n = Suc (m div q + h)\<close>
using less_natE by blast
moreover have \<open>m < m + (Suc h * q - m mod q)\<close>
using that by (simp add: trans_less_add1)
ultimately show ?Q
by (simp add: algebra_simps flip: minus_mod_eq_mult_div)
qed
lemma less_eq_div_iff_mult_less_eq:
\<open>m \<le> n div q \<longleftrightarrow> m * q \<le> n\<close> if \<open>q > 0\<close> for m n q :: nat
using div_less_iff_less_mult [of q n m] that by auto
lemma div_Suc:
\<open>Suc m div n = (if Suc m mod n = 0 then Suc (m div n) else m div n)\<close>
proof (cases \<open>n = 0 \<or> n = 1\<close>)
case True
then show ?thesis by auto
next
case False
then have \<open>n > 1\<close>
by simp
then have \<open>Suc m div n = m div n + Suc (m mod n) div n\<close>
using div_add1_eq [of m 1 n] by simp
also have \<open>Suc (m mod n) div n = of_bool (n dvd Suc m)\<close>
proof (cases \<open>n dvd Suc m\<close>)
case False
moreover have \<open>Suc (m mod n) \<noteq> n\<close>
proof (rule ccontr)
assume \<open>\<not> Suc (m mod n) \<noteq> n\<close>
then have \<open>m mod n = n - Suc 0\<close>
by simp
with \<open>n > 1\<close> have \<open>(m + 1) mod n = 0\<close>
by (subst mod_add_left_eq [symmetric]) simp
then have \<open>n dvd Suc m\<close>
by auto
with False show False ..
qed
moreover have \<open>Suc (m mod n) \<le> n\<close>
using \<open>n > 1\<close> by (simp add: Suc_le_eq)
ultimately show ?thesis
by (simp add: div_eq_0_iff)
next
case True
then obtain q where q: \<open>Suc m = n * q\<close> ..
moreover have \<open>q > 0\<close> by (rule ccontr)
(use q in simp)
ultimately have \<open>m mod n = n - Suc 0\<close>
using \<open>n > 1\<close> mult_le_cancel1 [of n \<open>Suc 0\<close> q]
by (auto intro: mod_nat_eqI)
with True \<open>n > 1\<close> show ?thesis
by simp
qed
finally show ?thesis
by (simp add: mod_greater_zero_iff_not_dvd)
qed
lemma mod_Suc:
\<open>Suc m mod n = (if Suc (m mod n) = n then 0 else Suc (m mod n))\<close>
proof (cases \<open>n = 0\<close>)
case True
then show ?thesis
by simp
next
case False
moreover have \<open>Suc m mod n = Suc (m mod n) mod n\<close>
by (simp add: mod_simps)
ultimately show ?thesis
by (auto intro!: mod_nat_eqI intro: neq_le_trans simp add: Suc_le_eq)
qed
lemma Suc_times_mod_eq:
"Suc (m * n) mod m = 1" if "Suc 0 < m"
using that by (simp add: mod_Suc)
lemma Suc_times_numeral_mod_eq [simp]:
"Suc (numeral k * n) mod numeral k = 1" if "numeral k \<noteq> (1::nat)"
by (rule Suc_times_mod_eq) (use that in simp)
lemma Suc_div_le_mono [simp]:
"m div n \<le> Suc m div n"
by (simp add: div_le_mono)
text \<open>These lemmas collapse some needless occurrences of Suc:
at least three Sucs, since two and fewer are rewritten back to Suc again!
We already have some rules to simplify operands smaller than 3.\<close>
lemma div_Suc_eq_div_add3 [simp]:
"m div Suc (Suc (Suc n)) = m div (3 + n)"
by (simp add: Suc3_eq_add_3)
lemma mod_Suc_eq_mod_add3 [simp]:
"m mod Suc (Suc (Suc n)) = m mod (3 + n)"
by (simp add: Suc3_eq_add_3)
lemma Suc_div_eq_add3_div:
"Suc (Suc (Suc m)) div n = (3 + m) div n"
by (simp add: Suc3_eq_add_3)
lemma Suc_mod_eq_add3_mod:
"Suc (Suc (Suc m)) mod n = (3 + m) mod n"
by (simp add: Suc3_eq_add_3)
lemmas Suc_div_eq_add3_div_numeral [simp] =
Suc_div_eq_add3_div [of _ "numeral v"] for v
lemmas Suc_mod_eq_add3_mod_numeral [simp] =
Suc_mod_eq_add3_mod [of _ "numeral v"] for v
lemma (in field_char_0) of_nat_div:
"of_nat (m div n) = ((of_nat m - of_nat (m mod n)) / of_nat n)"
proof -
have "of_nat (m div n) = ((of_nat (m div n * n + m mod n) - of_nat (m mod n)) / of_nat n :: 'a)"
unfolding of_nat_add by (cases "n = 0") simp_all
then show ?thesis
by simp
qed
text \<open>An ``induction'' law for modulus arithmetic.\<close>
lemma mod_induct [consumes 3, case_names step]:
"P m" if "P n" and "n < p" and "m < p"
and step: "\<And>n. n < p \<Longrightarrow> P n \<Longrightarrow> P (Suc n mod p)"
using \<open>m < p\<close> proof (induct m)
case 0
show ?case
proof (rule ccontr)
assume "\<not> P 0"
from \<open>n < p\<close> have "0 < p"
by simp
from \<open>n < p\<close> obtain m where "0 < m" and "p = n + m"
by (blast dest: less_imp_add_positive)
with \<open>P n\<close> have "P (p - m)"
by simp
moreover have "\<not> P (p - m)"
using \<open>0 < m\<close> proof (induct m)
case 0
then show ?case
by simp
next
case (Suc m)
show ?case
proof
assume P: "P (p - Suc m)"
with \<open>\<not> P 0\<close> have "Suc m < p"
by (auto intro: ccontr)
then have "Suc (p - Suc m) = p - m"
by arith
moreover from \<open>0 < p\<close> have "p - Suc m < p"
by arith
with P step have "P ((Suc (p - Suc m)) mod p)"
by blast
ultimately show False
using \<open>\<not> P 0\<close> Suc.hyps by (cases "m = 0") simp_all
qed
qed
ultimately show False
by blast
qed
next
case (Suc m)
then have "m < p" and mod: "Suc m mod p = Suc m"
by simp_all
from \<open>m < p\<close> have "P m"
by (rule Suc.hyps)
with \<open>m < p\<close> have "P (Suc m mod p)"
by (rule step)
with mod show ?case
by simp
qed
lemma funpow_mod_eq: \<^marker>\<open>contributor \<open>Lars Noschinski\<close>\<close>
\<open>(f ^^ (m mod n)) x = (f ^^ m) x\<close> if \<open>(f ^^ n) x = x\<close>
proof -
have \<open>(f ^^ m) x = (f ^^ (m mod n + m div n * n)) x\<close>
by simp
also have \<open>\<dots> = (f ^^ (m mod n)) (((f ^^ n) ^^ (m div n)) x)\<close>
by (simp only: funpow_add funpow_mult ac_simps) simp
also have \<open>((f ^^ n) ^^ q) x = x\<close> for q
by (induction q) (use \<open>(f ^^ n) x = x\<close> in simp_all)
finally show ?thesis
by simp
qed
lemma mod_eq_dvd_iff_nat:
\<open>m mod q = n mod q \<longleftrightarrow> q dvd m - n\<close> (is \<open>?P \<longleftrightarrow> ?Q\<close>)
if \<open>m \<ge> n\<close> for m n q :: nat
proof
assume ?Q
then obtain s where \<open>m - n = q * s\<close> ..
with that have \<open>m = q * s + n\<close>
by simp
then show ?P
by simp
next
assume ?P
have \<open>m - n = m div q * q + m mod q - (n div q * q + n mod q)\<close>
by simp
also have \<open>\<dots> = q * (m div q - n div q)\<close>
by (simp only: algebra_simps \<open>?P\<close>)
finally show ?Q ..
qed
lemma mod_eq_iff_dvd_symdiff_nat:
\<open>m mod q = n mod q \<longleftrightarrow> q dvd nat \<bar>int m - int n\<bar>\<close>
by (auto simp add: abs_if mod_eq_dvd_iff_nat nat_diff_distrib dest: sym intro: sym)
lemma mod_eq_nat1E:
fixes m n q :: nat
assumes "m mod q = n mod q" and "m \<ge> n"
obtains s where "m = n + q * s"
proof -
from assms have "q dvd m - n"
by (simp add: mod_eq_dvd_iff_nat)
then obtain s where "m - n = q * s" ..
with \<open>m \<ge> n\<close> have "m = n + q * s"
by simp
with that show thesis .
qed
lemma mod_eq_nat2E:
fixes m n q :: nat
assumes "m mod q = n mod q" and "n \<ge> m"
obtains s where "n = m + q * s"
using assms mod_eq_nat1E [of n q m] by (auto simp add: ac_simps)
lemma nat_mod_eq_iff:
"(x::nat) mod n = y mod n \<longleftrightarrow> (\<exists>q1 q2. x + n * q1 = y + n * q2)" (is "?lhs = ?rhs")
proof
assume H: "x mod n = y mod n"
{ assume xy: "x \<le> y"
from H have th: "y mod n = x mod n" by simp
from mod_eq_nat1E [OF th xy] obtain q where "y = x + n * q" .
then have "x + n * q = y + n * 0"
by simp
then have "\<exists>q1 q2. x + n * q1 = y + n * q2"
by blast
}
moreover
{ assume xy: "y \<le> x"
from mod_eq_nat1E [OF H xy] obtain q where "x = y + n * q" .
then have "x + n * 0 = y + n * q"
by simp
then have "\<exists>q1 q2. x + n * q1 = y + n * q2"
by blast
}
ultimately show ?rhs using linear[of x y] by blast
next
assume ?rhs then obtain q1 q2 where q12: "x + n * q1 = y + n * q2" by blast
hence "(x + n * q1) mod n = (y + n * q2) mod n" by simp
thus ?lhs by simp
qed
subsection \<open>Division on \<^typ>\<open>int\<close>\<close>
subsubsection \<open>Basic instantiation\<close>
instantiation int :: "{normalization_semidom, idom_modulo}"
begin
definition normalize_int :: \<open>int \<Rightarrow> int\<close>
where [simp]: \<open>normalize = (abs :: int \<Rightarrow> int)\<close>
definition unit_factor_int :: \<open>int \<Rightarrow> int\<close>
where [simp]: \<open>unit_factor = (sgn :: int \<Rightarrow> int)\<close>
definition divide_int :: \<open>int \<Rightarrow> int \<Rightarrow> int\<close>
where \<open>k div l = (sgn k * sgn l * int (nat \<bar>k\<bar> div nat \<bar>l\<bar>)
- of_bool (l \<noteq> 0 \<and> sgn k \<noteq> sgn l \<and> \<not> l dvd k))\<close>
lemma divide_int_unfold:
\<open>(sgn k * int m) div (sgn l * int n) = (sgn k * sgn l * int (m div n)
- of_bool ((k = 0 \<longleftrightarrow> m = 0) \<and> l \<noteq> 0 \<and> n \<noteq> 0 \<and> sgn k \<noteq> sgn l \<and> \<not> n dvd m))\<close>
by (simp add: divide_int_def sgn_mult nat_mult_distrib abs_mult sgn_eq_0_iff ac_simps)
definition modulo_int :: \<open>int \<Rightarrow> int \<Rightarrow> int\<close>
where \<open>k mod l = sgn k * int (nat \<bar>k\<bar> mod nat \<bar>l\<bar>) + l * of_bool (sgn k \<noteq> sgn l \<and> \<not> l dvd k)\<close>
lemma modulo_int_unfold:
\<open>(sgn k * int m) mod (sgn l * int n) =
sgn k * int (m mod (of_bool (l \<noteq> 0) * n)) + (sgn l * int n) * of_bool ((k = 0 \<longleftrightarrow> m = 0) \<and> sgn k \<noteq> sgn l \<and> \<not> n dvd m)\<close>
by (auto simp add: modulo_int_def sgn_mult abs_mult)
instance proof
fix k :: int show "k div 0 = 0"
by (simp add: divide_int_def)
next
fix k l :: int
assume "l \<noteq> 0"
obtain n m and s t where k: "k = sgn s * int n" and l: "l = sgn t * int m"
by (blast intro: int_sgnE elim: that)
then have "k * l = sgn (s * t) * int (n * m)"
by (simp add: ac_simps sgn_mult)
with k l \<open>l \<noteq> 0\<close> show "k * l div l = k"
by (simp only: divide_int_unfold)
(auto simp add: algebra_simps sgn_mult sgn_1_pos sgn_0_0)
next
fix k l :: int
obtain n m and s t where "k = sgn s * int n" and "l = sgn t * int m"
by (blast intro: int_sgnE elim: that)
then show "k div l * l + k mod l = k"
by (simp add: divide_int_unfold modulo_int_unfold algebra_simps modulo_nat_def of_nat_diff)
qed (auto simp add: sgn_mult mult_sgn_abs abs_eq_iff')
end
subsubsection \<open>Algebraic foundations\<close>
lemma coprime_int_iff [simp]:
"coprime (int m) (int n) \<longleftrightarrow> coprime m n" (is "?P \<longleftrightarrow> ?Q")
proof
assume ?P
show ?Q
proof (rule coprimeI)
fix q
assume "q dvd m" "q dvd n"
then have "int q dvd int m" "int q dvd int n"
by simp_all
with \<open>?P\<close> have "is_unit (int q)"
by (rule coprime_common_divisor)
then show "is_unit q"
by simp
qed
next
assume ?Q
show ?P
proof (rule coprimeI)
fix k
assume "k dvd int m" "k dvd int n"
then have "nat \<bar>k\<bar> dvd m" "nat \<bar>k\<bar> dvd n"
by simp_all
with \<open>?Q\<close> have "is_unit (nat \<bar>k\<bar>)"
by (rule coprime_common_divisor)
then show "is_unit k"
by simp
qed
qed
lemma coprime_abs_left_iff [simp]:
"coprime \<bar>k\<bar> l \<longleftrightarrow> coprime k l" for k l :: int
using coprime_normalize_left_iff [of k l] by simp
lemma coprime_abs_right_iff [simp]:
"coprime k \<bar>l\<bar> \<longleftrightarrow> coprime k l" for k l :: int
using coprime_abs_left_iff [of l k] by (simp add: ac_simps)
lemma coprime_nat_abs_left_iff [simp]:
"coprime (nat \<bar>k\<bar>) n \<longleftrightarrow> coprime k (int n)"
proof -
define m where "m = nat \<bar>k\<bar>"
then have "\<bar>k\<bar> = int m"
by simp
moreover have "coprime k (int n) \<longleftrightarrow> coprime \<bar>k\<bar> (int n)"
by simp
ultimately show ?thesis
by simp
qed
lemma coprime_nat_abs_right_iff [simp]:
"coprime n (nat \<bar>k\<bar>) \<longleftrightarrow> coprime (int n) k"
using coprime_nat_abs_left_iff [of k n] by (simp add: ac_simps)
lemma coprime_common_divisor_int: "coprime a b \<Longrightarrow> x dvd a \<Longrightarrow> x dvd b \<Longrightarrow> \<bar>x\<bar> = 1"
for a b :: int
by (drule coprime_common_divisor [of _ _ x]) simp_all
subsubsection \<open>Basic conversions\<close>
lemma div_abs_eq_div_nat:
"\<bar>k\<bar> div \<bar>l\<bar> = int (nat \<bar>k\<bar> div nat \<bar>l\<bar>)"
by (auto simp add: divide_int_def)
lemma div_eq_div_abs:
\<open>k div l = sgn k * sgn l * (\<bar>k\<bar> div \<bar>l\<bar>)
- of_bool (l \<noteq> 0 \<and> sgn k \<noteq> sgn l \<and> \<not> l dvd k)\<close>
for k l :: int
by (simp add: divide_int_def [of k l] div_abs_eq_div_nat)
lemma div_abs_eq:
\<open>\<bar>k\<bar> div \<bar>l\<bar> = sgn k * sgn l * (k div l + of_bool (sgn k \<noteq> sgn l \<and> \<not> l dvd k))\<close>
for k l :: int
by (simp add: div_eq_div_abs [of k l] ac_simps)
lemma mod_abs_eq_div_nat:
"\<bar>k\<bar> mod \<bar>l\<bar> = int (nat \<bar>k\<bar> mod nat \<bar>l\<bar>)"
by (simp add: modulo_int_def)
lemma mod_eq_mod_abs:
\<open>k mod l = sgn k * (\<bar>k\<bar> mod \<bar>l\<bar>) + l * of_bool (sgn k \<noteq> sgn l \<and> \<not> l dvd k)\<close>
for k l :: int
by (simp add: modulo_int_def [of k l] mod_abs_eq_div_nat)
lemma mod_abs_eq:
\<open>\<bar>k\<bar> mod \<bar>l\<bar> = sgn k * (k mod l - l * of_bool (sgn k \<noteq> sgn l \<and> \<not> l dvd k))\<close>
for k l :: int
by (auto simp: mod_eq_mod_abs [of k l])
lemma div_sgn_abs_cancel:
fixes k l v :: int
assumes "v \<noteq> 0"
shows "(sgn v * \<bar>k\<bar>) div (sgn v * \<bar>l\<bar>) = \<bar>k\<bar> div \<bar>l\<bar>"
using assms by (simp add: sgn_mult abs_mult sgn_0_0
divide_int_def [of "sgn v * \<bar>k\<bar>" "sgn v * \<bar>l\<bar>"] flip: div_abs_eq_div_nat)
lemma div_eq_sgn_abs:
fixes k l v :: int
assumes "sgn k = sgn l"
shows "k div l = \<bar>k\<bar> div \<bar>l\<bar>"
using assms by (auto simp add: div_abs_eq)
lemma div_dvd_sgn_abs:
fixes k l :: int
assumes "l dvd k"
shows "k div l = (sgn k * sgn l) * (\<bar>k\<bar> div \<bar>l\<bar>)"
using assms by (auto simp add: div_abs_eq ac_simps)
lemma div_noneq_sgn_abs:
fixes k l :: int
assumes "l \<noteq> 0"
assumes "sgn k \<noteq> sgn l"
shows "k div l = - (\<bar>k\<bar> div \<bar>l\<bar>) - of_bool (\<not> l dvd k)"
using assms by (auto simp add: div_abs_eq ac_simps sgn_0_0 dest!: sgn_not_eq_imp)
subsubsection \<open>Euclidean division\<close>
instantiation int :: unique_euclidean_ring
begin
definition euclidean_size_int :: "int \<Rightarrow> nat"
where [simp]: "euclidean_size_int = (nat \<circ> abs :: int \<Rightarrow> nat)"
definition division_segment_int :: "int \<Rightarrow> int"
where "division_segment_int k = (if k \<ge> 0 then 1 else - 1)"
lemma division_segment_eq_sgn:
"division_segment k = sgn k" if "k \<noteq> 0" for k :: int
using that by (simp add: division_segment_int_def)
lemma abs_division_segment [simp]:
"\<bar>division_segment k\<bar> = 1" for k :: int
by (simp add: division_segment_int_def)
lemma abs_mod_less:
"\<bar>k mod l\<bar> < \<bar>l\<bar>" if "l \<noteq> 0" for k l :: int
proof -
obtain n m and s t where "k = sgn s * int n" and "l = sgn t * int m"
by (blast intro: int_sgnE elim: that)
with that show ?thesis
by (auto simp add: modulo_int_unfold abs_mult mod_greater_zero_iff_not_dvd
simp flip: right_diff_distrib dest!: sgn_not_eq_imp)
(simp add: sgn_0_0)
qed
lemma sgn_mod:
"sgn (k mod l) = sgn l" if "l \<noteq> 0" "\<not> l dvd k" for k l :: int
proof -
obtain n m and s t where "k = sgn s * int n" and "l = sgn t * int m"
by (blast intro: int_sgnE elim: that)
with that show ?thesis
by (auto simp add: modulo_int_unfold sgn_mult mod_greater_zero_iff_not_dvd
simp flip: right_diff_distrib dest!: sgn_not_eq_imp)
qed
instance proof
fix k l :: int
show "division_segment (k mod l) = division_segment l" if
"l \<noteq> 0" and "\<not> l dvd k"
using that by (simp add: division_segment_eq_sgn dvd_eq_mod_eq_0 sgn_mod)
next
fix l q r :: int
obtain n m and s t
where l: "l = sgn s * int n" and q: "q = sgn t * int m"
by (blast intro: int_sgnE elim: that)
assume \<open>l \<noteq> 0\<close>
with l have "s \<noteq> 0" and "n > 0"
by (simp_all add: sgn_0_0)
assume "division_segment r = division_segment l"
moreover have "r = sgn r * \<bar>r\<bar>"
by (simp add: sgn_mult_abs)
moreover define u where "u = nat \<bar>r\<bar>"
ultimately have "r = sgn l * int u"
using division_segment_eq_sgn \<open>l \<noteq> 0\<close> by (cases "r = 0") simp_all
with l \<open>n > 0\<close> have r: "r = sgn s * int u"
by (simp add: sgn_mult)
assume "euclidean_size r < euclidean_size l"
with l r \<open>s \<noteq> 0\<close> have "u < n"
by (simp add: abs_mult)
show "(q * l + r) div l = q"
proof (cases "q = 0 \<or> r = 0")
case True
then show ?thesis
proof
assume "q = 0"
then show ?thesis
using l r \<open>u < n\<close> by (simp add: divide_int_unfold)
next
assume "r = 0"
from \<open>r = 0\<close> have *: "q * l + r = sgn (t * s) * int (n * m)"
using q l by (simp add: ac_simps sgn_mult)
from \<open>s \<noteq> 0\<close> \<open>n > 0\<close> show ?thesis
by (simp only: *, simp only: * q l divide_int_unfold)
(auto simp add: sgn_mult ac_simps)
qed
next
case False
with q r have "t \<noteq> 0" and "m > 0" and "s \<noteq> 0" and "u > 0"
by (simp_all add: sgn_0_0)
moreover from \<open>0 < m\<close> \<open>u < n\<close> have "u \<le> m * n"
using mult_le_less_imp_less [of 1 m u n] by simp
ultimately have *: "q * l + r = sgn (s * t)
* int (if t < 0 then m * n - u else m * n + u)"
using l q r
by (simp add: sgn_mult algebra_simps of_nat_diff)
have "(m * n - u) div n = m - 1" if "u > 0"
using \<open>0 < m\<close> \<open>u < n\<close> that
by (auto intro: div_nat_eqI simp add: algebra_simps)
moreover have "n dvd m * n - u \<longleftrightarrow> n dvd u"
using \<open>u \<le> m * n\<close> dvd_diffD1 [of n "m * n" u]
by auto
ultimately show ?thesis
using \<open>s \<noteq> 0\<close> \<open>m > 0\<close> \<open>u > 0\<close> \<open>u < n\<close> \<open>u \<le> m * n\<close>
by (simp only: *, simp only: l q divide_int_unfold)
(auto simp add: sgn_mult sgn_0_0 sgn_1_pos algebra_simps dest: dvd_imp_le)
qed
qed (use mult_le_mono2 [of 1] in \<open>auto simp add: division_segment_int_def not_le zero_less_mult_iff mult_less_0_iff abs_mult sgn_mult abs_mod_less sgn_mod nat_mult_distrib\<close>)
end
lemma euclidean_relation_intI [case_names by0 divides euclidean_relation]:
\<open>(k div l, k mod l) = (q, r)\<close>
if by0': \<open>l = 0 \<Longrightarrow> q = 0 \<and> r = k\<close>
and divides': \<open>l \<noteq> 0 \<Longrightarrow> l dvd k \<Longrightarrow> r = 0 \<and> k = q * l\<close>
and euclidean_relation': \<open>l \<noteq> 0 \<Longrightarrow> \<not> l dvd k \<Longrightarrow> sgn r = sgn l
\<and> \<bar>r\<bar> < \<bar>l\<bar> \<and> k = q * l + r\<close> for k l :: int
proof (induction rule: euclidean_relationI)
case by0
then show ?case
by (rule by0')
next
case divides
then show ?case
by (rule divides')
next
case euclidean_relation
with euclidean_relation' have \<open>sgn r = sgn l\<close> \<open>\<bar>r\<bar> < \<bar>l\<bar>\<close> \<open>k = q * l + r\<close>
by simp_all
from \<open>sgn r = sgn l\<close> \<open>l \<noteq> 0\<close> have \<open>division_segment r = division_segment l\<close>
by (simp add: division_segment_int_def sgn_if split: if_splits)
with \<open>\<bar>r\<bar> < \<bar>l\<bar>\<close> \<open>k = q * l + r\<close>
show ?case
by simp
qed
subsubsection \<open>Trivial reduction steps\<close>
lemma div_pos_pos_trivial [simp]:
"k div l = 0" if "k \<ge> 0" and "k < l" for k l :: int
using that by (simp add: unique_euclidean_semiring_class.div_eq_0_iff division_segment_int_def)
lemma mod_pos_pos_trivial [simp]:
"k mod l = k" if "k \<ge> 0" and "k < l" for k l :: int
using that by (simp add: mod_eq_self_iff_div_eq_0)
lemma div_neg_neg_trivial [simp]:
"k div l = 0" if "k \<le> 0" and "l < k" for k l :: int
using that by (cases "k = 0") (simp, simp add: unique_euclidean_semiring_class.div_eq_0_iff division_segment_int_def)
lemma mod_neg_neg_trivial [simp]:
"k mod l = k" if "k \<le> 0" and "l < k" for k l :: int
using that by (simp add: mod_eq_self_iff_div_eq_0)
lemma
div_pos_neg_trivial: \<open>k div l = - 1\<close> (is ?Q)
and mod_pos_neg_trivial: \<open>k mod l = k + l\<close> (is ?R)
if \<open>0 < k\<close> and \<open>k + l \<le> 0\<close> for k l :: int
proof -
from that have \<open>l < 0\<close>
by simp
have \<open>(k div l, k mod l) = (- 1, k + l)\<close>
proof (induction rule: euclidean_relation_intI)
case by0
with \<open>l < 0\<close> show ?case
by simp
next
case divides
from \<open>l dvd k\<close> obtain j where \<open>k = l * j\<close> ..
with \<open>l < 0\<close> \<open>0 < k\<close> have \<open>j < 0\<close>
by (simp add: zero_less_mult_iff)
moreover from \<open>k + l \<le> 0\<close> \<open>k = l * j\<close> have \<open>l * (j + 1) \<le> 0\<close>
by (simp add: algebra_simps)
with \<open>l < 0\<close> have \<open>j + 1 \<ge> 0\<close>
by (simp add: mult_le_0_iff)
with \<open>j < 0\<close> have \<open>j = - 1\<close>
by simp
with \<open>k = l * j\<close> show ?case
by simp
next
case euclidean_relation
with \<open>k + l \<le> 0\<close> have \<open>k + l < 0\<close>
by (auto simp add: less_le add_eq_0_iff)
with \<open>0 < k\<close> show ?case
by simp
qed
then show ?Q and ?R
by simp_all
qed
text \<open>There is neither \<open>div_neg_pos_trivial\<close> nor \<open>mod_neg_pos_trivial\<close>
because \<^term>\<open>0 div l = 0\<close> would supersede it.\<close>
subsubsection \<open>More uniqueness rules\<close>
lemma
fixes a b q r :: int
assumes \<open>a = b * q + r\<close> \<open>0 \<le> r\<close> \<open>r < b\<close>
shows int_div_pos_eq:
\<open>a div b = q\<close> (is ?Q)
and int_mod_pos_eq:
\<open>a mod b = r\<close> (is ?R)
proof -
have \<open>(a div b, a mod b) = (q, r)\<close>
by (induction rule: euclidean_relation_intI)
(use assms in \<open>auto simp add: ac_simps dvd_add_left_iff sgn_1_pos le_less dest: zdvd_imp_le\<close>)
then show ?Q and ?R
by simp_all
qed
lemma int_div_neg_eq:
\<open>a div b = q\<close> if \<open>a = b * q + r\<close> \<open>r \<le> 0\<close> \<open>b < r\<close> for a b q r :: int
using that int_div_pos_eq [of a \<open>- b\<close> \<open>- q\<close> \<open>- r\<close>] by simp_all
lemma int_mod_neg_eq:
\<open>a mod b = r\<close> if \<open>a = b * q + r\<close> \<open>r \<le> 0\<close> \<open>b < r\<close> for a b q r :: int
using that int_div_neg_eq [of a b q r] by simp
subsubsection \<open>Laws for unary minus\<close>
lemma zmod_zminus1_not_zero:
fixes k l :: int
shows "- k mod l \<noteq> 0 \<Longrightarrow> k mod l \<noteq> 0"
by (simp add: mod_eq_0_iff_dvd)
lemma zmod_zminus2_not_zero:
fixes k l :: int
shows "k mod - l \<noteq> 0 \<Longrightarrow> k mod l \<noteq> 0"
by (simp add: mod_eq_0_iff_dvd)
lemma zdiv_zminus1_eq_if:
\<open>(- a) div b = (if a mod b = 0 then - (a div b) else - (a div b) - 1)\<close>
if \<open>b \<noteq> 0\<close> for a b :: int
using that sgn_not_eq_imp [of b \<open>- a\<close>]
by (cases \<open>a = 0\<close>) (auto simp add: div_eq_div_abs [of \<open>- a\<close> b] div_eq_div_abs [of a b] sgn_eq_0_iff)
lemma zdiv_zminus2_eq_if:
\<open>a div (- b) = (if a mod b = 0 then - (a div b) else - (a div b) - 1)\<close>
if \<open>b \<noteq> 0\<close> for a b :: int
using that by (auto simp add: zdiv_zminus1_eq_if div_minus_right)
lemma zmod_zminus1_eq_if:
\<open>(- a) mod b = (if a mod b = 0 then 0 else b - (a mod b))\<close>
for a b :: int
by (cases \<open>b = 0\<close>)
(auto simp flip: minus_div_mult_eq_mod simp add: zdiv_zminus1_eq_if algebra_simps)
lemma zmod_zminus2_eq_if:
\<open>a mod (- b) = (if a mod b = 0 then 0 else (a mod b) - b)\<close>
for a b :: int
by (auto simp add: zmod_zminus1_eq_if mod_minus_right)
subsubsection \<open>Borders\<close>
lemma pos_mod_bound [simp]:
"k mod l < l" if "l > 0" for k l :: int
proof -
obtain m and s where "k = sgn s * int m"
by (rule int_sgnE)
moreover from that obtain n where "l = sgn 1 * int n"
by (cases l) simp_all
moreover from this that have "n > 0"
by simp
ultimately show ?thesis
by (simp only: modulo_int_unfold)
(auto simp add: mod_greater_zero_iff_not_dvd sgn_1_pos)
qed
lemma neg_mod_bound [simp]:
"l < k mod l" if "l < 0" for k l :: int
proof -
obtain m and s where "k = sgn s * int m"
by (rule int_sgnE)
moreover from that obtain q where "l = sgn (- 1) * int (Suc q)"
by (cases l) simp_all
moreover define n where "n = Suc q"
then have "Suc q = n"
by simp
ultimately show ?thesis
by (simp only: modulo_int_unfold)
(auto simp add: mod_greater_zero_iff_not_dvd sgn_1_neg)
qed
lemma pos_mod_sign [simp]:
"0 \<le> k mod l" if "l > 0" for k l :: int
proof -
obtain m and s where "k = sgn s * int m"
by (rule int_sgnE)
moreover from that obtain n where "l = sgn 1 * int n"
by (cases l) auto
moreover from this that have "n > 0"
by simp
ultimately show ?thesis
by (simp only: modulo_int_unfold) (auto simp add: sgn_1_pos)
qed
lemma neg_mod_sign [simp]:
"k mod l \<le> 0" if "l < 0" for k l :: int
proof -
obtain m and s where "k = sgn s * int m"
by (rule int_sgnE)
moreover from that obtain q where "l = sgn (- 1) * int (Suc q)"
by (cases l) simp_all
moreover define n where "n = Suc q"
then have "Suc q = n"
by simp
moreover have \<open>int (m mod n) \<le> int n\<close>
using \<open>Suc q = n\<close> by simp
then have \<open>sgn s * int (m mod n) \<le> int n\<close>
by (cases s \<open>0::int\<close> rule: linorder_cases) simp_all
ultimately show ?thesis
by (simp only: modulo_int_unfold) auto
qed
subsubsection \<open>Splitting Rules for div and mod\<close>
lemma split_zdiv:
\<open>P (n div k) \<longleftrightarrow>
(k = 0 \<longrightarrow> P 0) \<and>
(0 < k \<longrightarrow> (\<forall>i j. 0 \<le> j \<and> j < k \<and> n = k * i + j \<longrightarrow> P i)) \<and>
(k < 0 \<longrightarrow> (\<forall>i j. k < j \<and> j \<le> 0 \<and> n = k * i + j \<longrightarrow> P i))\<close> (is ?div)
and split_zmod:
\<open>Q (n mod k) \<longleftrightarrow>
(k = 0 \<longrightarrow> Q n) \<and>
(0 < k \<longrightarrow> (\<forall>i j. 0 \<le> j \<and> j < k \<and> n = k * i + j \<longrightarrow> Q j)) \<and>
(k < 0 \<longrightarrow> (\<forall>i j. k < j \<and> j \<le> 0 \<and> n = k * i + j \<longrightarrow> Q j))\<close> (is ?mod)
for n k :: int
proof -
have *: \<open>R (n div k) (n mod k) \<longleftrightarrow>
(k = 0 \<longrightarrow> R 0 n) \<and>
(0 < k \<longrightarrow> (\<forall>i j. 0 \<le> j \<and> j < k \<and> n = k * i + j \<longrightarrow> R i j)) \<and>
(k < 0 \<longrightarrow> (\<forall>i j. k < j \<and> j \<le> 0 \<and> n = k * i + j \<longrightarrow> R i j))\<close> for R
by (cases \<open>k = 0\<close>)
(auto simp add: linorder_class.neq_iff)
from * [of \<open>\<lambda>q _. P q\<close>] show ?div .
from * [of \<open>\<lambda>_ r. Q r\<close>] show ?mod .
qed
text \<open>Enable (lin)arith to deal with \<^const>\<open>divide\<close> and \<^const>\<open>modulo\<close>
when these are applied to some constant that is of the form
\<^term>\<open>numeral k\<close>:\<close>
declare split_zdiv [of _ _ \<open>numeral n\<close>, linarith_split] for n
declare split_zdiv [of _ _ \<open>- numeral n\<close>, linarith_split] for n
declare split_zmod [of _ _ \<open>numeral n\<close>, linarith_split] for n
declare split_zmod [of _ _ \<open>- numeral n\<close>, linarith_split] for n
lemma zdiv_eq_0_iff:
"i div k = 0 \<longleftrightarrow> k = 0 \<or> 0 \<le> i \<and> i < k \<or> i \<le> 0 \<and> k < i" (is "?L = ?R")
for i k :: int
proof
assume ?L
moreover have "?L \<longrightarrow> ?R"
by (rule split_zdiv [THEN iffD2]) simp
ultimately show ?R
by blast
next
assume ?R then show ?L
by auto
qed
lemma zmod_trivial_iff:
fixes i k :: int
shows "i mod k = i \<longleftrightarrow> k = 0 \<or> 0 \<le> i \<and> i < k \<or> i \<le> 0 \<and> k < i"
proof -
have "i mod k = i \<longleftrightarrow> i div k = 0"
using div_mult_mod_eq [of i k] by safe auto
with zdiv_eq_0_iff
show ?thesis
by simp
qed
subsubsection \<open>Algebraic rewrites\<close>
lemma zdiv_zmult2_eq: \<open>a div (b * c) = (a div b) div c\<close> (is ?Q)
and zmod_zmult2_eq: \<open>a mod (b * c) = b * (a div b mod c) + a mod b\<close> (is ?P)
if \<open>c \<ge> 0\<close> for a b c :: int
proof -
have *: \<open>(a div (b * c), a mod (b * c)) = ((a div b) div c, b * (a div b mod c) + a mod b)\<close>
if \<open>b > 0\<close> for a b
proof (induction rule: euclidean_relationI)
case by0
then show ?case by auto
next
case divides
then obtain d where \<open>a = b * c * d\<close>
by blast
with divides that show ?case
by (simp add: ac_simps)
next
case euclidean_relation
with \<open>b > 0\<close> \<open>c \<ge> 0\<close> have \<open>0 < c\<close> \<open>b > 0\<close>
by simp_all
then have \<open>a mod b < b\<close>
by simp
moreover have \<open>1 \<le> c - a div b mod c\<close>
using \<open>c > 0\<close> by (simp add: int_one_le_iff_zero_less)
ultimately have \<open>a mod b * 1 < b * (c - a div b mod c)\<close>
by (rule mult_less_le_imp_less) (use \<open>b > 0\<close> in simp_all)
with \<open>0 < b\<close> \<open>0 < c\<close> show ?case
by (simp add: division_segment_int_def algebra_simps flip: minus_mod_eq_mult_div)
qed
show ?Q
proof (cases \<open>b \<ge> 0\<close>)
case True
with * [of b a] show ?thesis
by (cases \<open>b = 0\<close>) simp_all
next
case False
with * [of \<open>- b\<close> \<open>- a\<close>] show ?thesis
by simp
qed
show ?P
proof (cases \<open>b \<ge> 0\<close>)
case True
with * [of b a] show ?thesis
by (cases \<open>b = 0\<close>) simp_all
next
case False
with * [of \<open>- b\<close> \<open>- a\<close>] show ?thesis
by simp
qed
qed
lemma zdiv_zmult2_eq':
\<open>k div (l * j) = ((sgn j * k) div l) div \<bar>j\<bar>\<close> for k l j :: int
proof -
have \<open>k div (l * j) = (sgn j * k) div (sgn j * (l * j))\<close>
by (simp add: sgn_0_0)
also have \<open>sgn j * (l * j) = l * \<bar>j\<bar>\<close>
by (simp add: mult.left_commute [of _ l] abs_sgn) (simp add: ac_simps)
also have \<open>(sgn j * k) div (l * \<bar>j\<bar>) = ((sgn j * k) div l) div \<bar>j\<bar>\<close>
by (simp add: zdiv_zmult2_eq)
finally show ?thesis .
qed
lemma half_nonnegative_int_iff [simp]:
\<open>k div 2 \<ge> 0 \<longleftrightarrow> k \<ge> 0\<close> for k :: int
by auto
lemma half_negative_int_iff [simp]:
\<open>k div 2 < 0 \<longleftrightarrow> k < 0\<close> for k :: int
by auto
subsubsection \<open>Distributive laws for conversions.\<close>
lemma zdiv_int:
\<open>int (m div n) = int m div int n\<close>
by (cases \<open>m = 0\<close>) (auto simp add: divide_int_def)
lemma zmod_int:
\<open>int (m mod n) = int m mod int n\<close>
by (cases \<open>m = 0\<close>) (auto simp add: modulo_int_def)
lemma nat_div_distrib:
\<open>nat (x div y) = nat x div nat y\<close> if \<open>0 \<le> x\<close>
using that by (simp add: divide_int_def sgn_if)
lemma nat_div_distrib':
\<open>nat (x div y) = nat x div nat y\<close> if \<open>0 \<le> y\<close>
using that by (simp add: divide_int_def sgn_if)
lemma nat_mod_distrib: \<comment> \<open>Fails if y<0: the LHS collapses to (nat z) but the RHS doesn't\<close>
\<open>nat (x mod y) = nat x mod nat y\<close> if \<open>0 \<le> x\<close> \<open>0 \<le> y\<close>
using that by (simp add: modulo_int_def sgn_if)
subsubsection \<open>Monotonicity in the First Argument (Dividend)\<close>
lemma zdiv_mono1:
\<open>a div b \<le> a' div b\<close>
if \<open>a \<le> a'\<close> \<open>0 < b\<close>
for a b b' :: int
proof -
from \<open>a \<le> a'\<close> have \<open>b * (a div b) + a mod b \<le> b * (a' div b) + a' mod b\<close>
by simp
then have \<open>b * (a div b) \<le> (a' mod b - a mod b) + b * (a' div b)\<close>
by (simp add: algebra_simps)
moreover have \<open>a' mod b < b + a mod b\<close>
by (rule less_le_trans [of _ b]) (use \<open>0 < b\<close> in simp_all)
ultimately have \<open>b * (a div b) < b * (1 + a' div b)\<close>
by (simp add: distrib_left)
with \<open>0 < b\<close> have \<open>a div b < 1 + a' div b\<close>
by (simp add: mult_less_cancel_left)
then show ?thesis
by simp
qed
lemma zdiv_mono1_neg:
\<open>a' div b \<le> a div b\<close>
if \<open>a \<le> a'\<close> \<open>b < 0\<close>
for a a' b :: int
using that zdiv_mono1 [of \<open>- a'\<close> \<open>- a\<close> \<open>- b\<close>] by simp
subsubsection \<open>Monotonicity in the Second Argument (Divisor)\<close>
lemma zdiv_mono2:
\<open>a div b \<le> a div b'\<close> if \<open>0 \<le> a\<close> \<open>0 < b'\<close> \<open>b' \<le> b\<close> for a b b' :: int
proof -
define q q' r r' where **: \<open>q = a div b\<close> \<open>q' = a div b'\<close> \<open>r = a mod b\<close> \<open>r' = a mod b'\<close>
then have *: \<open>b * q + r = b' * q' + r'\<close> \<open>0 \<le> b' * q' + r'\<close>
\<open>r' < b'\<close> \<open>0 \<le> r\<close> \<open>0 < b'\<close> \<open>b' \<le> b\<close>
using that by simp_all
have \<open>0 < b' * (q' + 1)\<close>
using * by (simp add: distrib_left)
with * have \<open>0 \<le> q'\<close>
by (simp add: zero_less_mult_iff)
moreover have \<open>b * q = r' - r + b' * q'\<close>
using * by linarith
ultimately have \<open>b * q < b * (q' + 1)\<close>
using mult_right_mono * unfolding distrib_left by fastforce
with * have \<open>q \<le> q'\<close>
by (simp add: mult_less_cancel_left_pos)
with ** show ?thesis
by simp
qed
lemma zdiv_mono2_neg:
\<open>a div b' \<le> a div b\<close> if \<open>a < 0\<close> \<open>0 < b'\<close> \<open>b' \<le> b\<close> for a b b' :: int
proof -
define q q' r r' where **: \<open>q = a div b\<close> \<open>q' = a div b'\<close> \<open>r = a mod b\<close> \<open>r' = a mod b'\<close>
then have *: \<open>b * q + r = b' * q' + r'\<close> \<open>b' * q' + r' < 0\<close>
\<open>r < b\<close> \<open>0 \<le> r'\<close> \<open>0 < b'\<close> \<open>b' \<le> b\<close>
using that by simp_all
have \<open>b' * q' < 0\<close>
using * by linarith
with * have \<open>q' \<le> 0\<close>
by (simp add: mult_less_0_iff)
have \<open>b * q' \<le> b' * q'\<close>
by (simp add: \<open>q' \<le> 0\<close> * mult_right_mono_neg)
then have "b * q' < b * (q + 1)"
using * by (simp add: distrib_left)
then have \<open>q' \<le> q\<close>
using * by (simp add: mult_less_cancel_left)
then show ?thesis
by (simp add: **)
qed
subsubsection \<open>Quotients of Signs\<close>
lemma div_eq_minus1:
\<open>0 < b \<Longrightarrow> - 1 div b = - 1\<close> for b :: int
by (simp add: divide_int_def)
lemma zmod_minus1:
\<open>0 < b \<Longrightarrow> - 1 mod b = b - 1\<close> for b :: int
by (auto simp add: modulo_int_def)
lemma minus_mod_int_eq:
\<open>- k mod l = l - 1 - (k - 1) mod l\<close> if \<open>l \<ge> 0\<close> for k l :: int
proof (cases \<open>l = 0\<close>)
case True
then show ?thesis
by simp
next
case False
with that have \<open>l > 0\<close>
by simp
then show ?thesis
proof (cases \<open>l dvd k\<close>)
case True
then obtain j where \<open>k = l * j\<close> ..
moreover have \<open>(l * j mod l - 1) mod l = l - 1\<close>
using \<open>l > 0\<close> by (simp add: zmod_minus1)
then have \<open>(l * j - 1) mod l = l - 1\<close>
by (simp only: mod_simps)
ultimately show ?thesis
by simp
next
case False
moreover have 1: \<open>0 < k mod l\<close>
using \<open>0 < l\<close> False le_less by fastforce
moreover have 2: \<open>k mod l < 1 + l\<close>
using \<open>0 < l\<close> pos_mod_bound[of l k] by linarith
from 1 2 \<open>l > 0\<close> have \<open>(k mod l - 1) mod l = k mod l - 1\<close>
by (simp add: zmod_trivial_iff)
ultimately show ?thesis
by (simp only: zmod_zminus1_eq_if)
(simp add: mod_eq_0_iff_dvd algebra_simps mod_simps)
qed
qed
lemma div_neg_pos_less0:
\<open>a div b < 0\<close> if \<open>a < 0\<close> \<open>0 < b\<close> for a b :: int
proof -
have "a div b \<le> - 1 div b"
using zdiv_mono1 that by auto
also have "... \<le> -1"
by (simp add: that(2) div_eq_minus1)
finally show ?thesis
by force
qed
lemma div_nonneg_neg_le0:
\<open>a div b \<le> 0\<close> if \<open>0 \<le> a\<close> \<open>b < 0\<close> for a b :: int
using that by (auto dest: zdiv_mono1_neg)
lemma div_nonpos_pos_le0:
\<open>a div b \<le> 0\<close> if \<open>a \<le> 0\<close> \<open>0 < b\<close> for a b :: int
using that by (auto dest: zdiv_mono1)
text\<open>Now for some equivalences of the form \<open>a div b >=< 0 \<longleftrightarrow> \<dots>\<close>
conditional upon the sign of \<open>a\<close> or \<open>b\<close>. There are many more.
They should all be simp rules unless that causes too much search.\<close>
lemma pos_imp_zdiv_nonneg_iff:
\<open>0 \<le> a div b \<longleftrightarrow> 0 \<le> a\<close>
if \<open>0 < b\<close> for a b :: int
proof
assume \<open>0 \<le> a div b\<close>
show \<open>0 \<le> a\<close>
proof (rule ccontr)
assume \<open>\<not> 0 \<le> a\<close>
then have \<open>a < 0\<close>
by simp
then have \<open>a div b < 0\<close>
using that by (rule div_neg_pos_less0)
with \<open>0 \<le> a div b\<close> show False
by simp
qed
next
assume "0 \<le> a"
then have "0 div b \<le> a div b"
using zdiv_mono1 that by blast
then show "0 \<le> a div b"
by auto
qed
lemma neg_imp_zdiv_nonneg_iff:
\<open>0 \<le> a div b \<longleftrightarrow> a \<le> 0\<close> if \<open>b < 0\<close> for a b :: int
using that pos_imp_zdiv_nonneg_iff [of \<open>- b\<close> \<open>- a\<close>] by simp
lemma pos_imp_zdiv_pos_iff:
\<open>0 < (i::int) div k \<longleftrightarrow> k \<le> i\<close> if \<open>0 < k\<close> for i k :: int
using that pos_imp_zdiv_nonneg_iff [of k i] zdiv_eq_0_iff [of i k] by arith
lemma pos_imp_zdiv_neg_iff:
\<open>a div b < 0 \<longleftrightarrow> a < 0\<close> if \<open>0 < b\<close> for a b :: int
\<comment> \<open>But not \<^prop>\<open>a div b \<le> 0 \<longleftrightarrow> a \<le> 0\<close>; consider \<^prop>\<open>a = 1\<close>, \<^prop>\<open>b = 2\<close> when \<^prop>\<open>a div b = 0\<close>.\<close>
using that by (simp add: pos_imp_zdiv_nonneg_iff flip: linorder_not_le)
lemma neg_imp_zdiv_neg_iff:
\<comment> \<open>But not \<^prop>\<open>a div b \<le> 0 \<longleftrightarrow> 0 \<le> a\<close>; consider \<^prop>\<open>a = - 1\<close>, \<^prop>\<open>b = - 2\<close> when \<^prop>\<open>a div b = 0\<close>.\<close>
\<open>a div b < 0 \<longleftrightarrow> 0 < a\<close> if \<open>b < 0\<close> for a b :: int
using that by (simp add: neg_imp_zdiv_nonneg_iff flip: linorder_not_le)
lemma nonneg1_imp_zdiv_pos_iff:
\<open>a div b > 0 \<longleftrightarrow> a \<ge> b \<and> b > 0\<close> if \<open>0 \<le> a\<close> for a b :: int
proof -
have "0 < a div b \<Longrightarrow> b \<le> a"
using div_pos_pos_trivial[of a b] that by arith
moreover have "0 < a div b \<Longrightarrow> b > 0"
using that div_nonneg_neg_le0[of a b] by (cases "b=0"; force)
moreover have "b \<le> a \<and> 0 < b \<Longrightarrow> 0 < a div b"
using int_one_le_iff_zero_less[of "a div b"] zdiv_mono1[of b a b] by simp
ultimately show ?thesis
by blast
qed
lemma zmod_le_nonneg_dividend:
\<open>m mod k \<le> m\<close> if \<open>(m::int) \<ge> 0\<close> for m k :: int
proof -
from that have \<open>m > 0 \<or> m = 0\<close>
by auto
then show ?thesis proof
assume \<open>m = 0\<close> then show ?thesis
by simp
next
assume \<open>m > 0\<close> then show ?thesis
proof (cases k \<open>0::int\<close> rule: linorder_cases)
case less
moreover define l where \<open>l = - k\<close>
ultimately have \<open>l > 0\<close>
by simp
with \<open>m > 0\<close> have \<open>int (nat m mod nat l) \<le> m\<close>
by (simp flip: le_nat_iff)
then have \<open>int (nat m mod nat l) - l \<le> m\<close>
using \<open>l > 0\<close> by simp
with \<open>m > 0\<close> \<open>l > 0\<close> show ?thesis
by (simp add: modulo_int_def l_def flip: le_nat_iff)
qed (simp_all add: modulo_int_def flip: le_nat_iff)
qed
qed
lemma sgn_div_eq_sgn_mult:
\<open>sgn (k div l) = of_bool (k div l \<noteq> 0) * sgn (k * l)\<close>
for k l :: int
proof (cases \<open>k div l = 0\<close>)
case True
then show ?thesis
by simp
next
case False
have \<open>0 \<le> \<bar>k\<bar> div \<bar>l\<bar>\<close>
by (cases \<open>l = 0\<close>) (simp_all add: pos_imp_zdiv_nonneg_iff)
then have \<open>\<bar>k\<bar> div \<bar>l\<bar> \<noteq> 0 \<longleftrightarrow> 0 < \<bar>k\<bar> div \<bar>l\<bar>\<close>
by (simp add: less_le)
also have \<open>\<dots> \<longleftrightarrow> \<bar>k\<bar> \<ge> \<bar>l\<bar>\<close>
using False nonneg1_imp_zdiv_pos_iff by auto
finally have *: \<open>\<bar>k\<bar> div \<bar>l\<bar> \<noteq> 0 \<longleftrightarrow> \<bar>l\<bar> \<le> \<bar>k\<bar>\<close> .
show ?thesis
using \<open>0 \<le> \<bar>k\<bar> div \<bar>l\<bar>\<close> False
by (auto simp add: div_eq_div_abs [of k l] div_eq_sgn_abs [of k l]
sgn_mult sgn_1_pos sgn_1_neg sgn_eq_0_iff nonneg1_imp_zdiv_pos_iff * dest: sgn_not_eq_imp)
qed
subsubsection \<open>Further properties\<close>
lemma div_int_pos_iff:
"k div l \<ge> 0 \<longleftrightarrow> k = 0 \<or> l = 0 \<or> k \<ge> 0 \<and> l \<ge> 0
\<or> k < 0 \<and> l < 0"
for k l :: int
proof (cases "k = 0 \<or> l = 0")
case False
then have *: "k \<noteq> 0" "l \<noteq> 0"
by auto
then have "0 \<le> k div l \<Longrightarrow> \<not> k < 0 \<Longrightarrow> 0 \<le> l"
by (meson neg_imp_zdiv_neg_iff not_le not_less_iff_gr_or_eq)
then show ?thesis
using * by (auto simp add: pos_imp_zdiv_nonneg_iff neg_imp_zdiv_nonneg_iff)
qed auto
lemma mod_int_pos_iff:
\<open>k mod l \<ge> 0 \<longleftrightarrow> l dvd k \<or> l = 0 \<and> k \<ge> 0 \<or> l > 0\<close>
for k l :: int
proof (cases "l > 0")
case False
then show ?thesis
by (simp add: dvd_eq_mod_eq_0) (use neg_mod_sign [of l k] in \<open>auto simp add: le_less not_less\<close>)
qed auto
lemma abs_div:
\<open>\<bar>x div y\<bar> = \<bar>x\<bar> div \<bar>y\<bar>\<close> if \<open>y dvd x\<close> for x y :: int
using that by (cases \<open>y = 0\<close>) (auto simp add: abs_mult)
lemma int_power_div_base: \<^marker>\<open>contributor \<open>Matthias Daum\<close>\<close>
\<open>k ^ m div k = k ^ (m - Suc 0)\<close> if \<open>0 < m\<close> \<open>0 < k\<close> for k :: int
using that by (cases m) simp_all
lemma int_div_less_self: \<^marker>\<open>contributor \<open>Matthias Daum\<close>\<close>
\<open>x div k < x\<close> if \<open>0 < x\<close> \<open>1 < k\<close> for x k :: int
proof -
from that have \<open>nat (x div k) = nat x div nat k\<close>
by (simp add: nat_div_distrib)
also from that have \<open>nat x div nat k < nat x\<close>
by simp
finally show ?thesis
by simp
qed
subsubsection \<open>Computing \<open>div\<close> and \<open>mod\<close> by shifting\<close>
lemma div_pos_geq:
\<open>k div l = (k - l) div l + 1\<close> if \<open>0 < l\<close> \<open>l \<le> k\<close> for k l :: int
proof -
have "k = (k - l) + l" by simp
then obtain j where k: "k = j + l" ..
with that show ?thesis by (simp add: div_add_self2)
qed
lemma mod_pos_geq:
\<open>k mod l = (k - l) mod l\<close> if \<open>0 < l\<close> \<open>l \<le> k\<close> for k l :: int
proof -
have "k = (k - l) + l" by simp
then obtain j where k: "k = j + l" ..
with that show ?thesis by simp
qed
lemma pos_zdiv_mult_2: \<open>(1 + 2 * b) div (2 * a) = b div a\<close> (is ?Q)
and pos_zmod_mult_2: \<open>(1 + 2 * b) mod (2 * a) = 1 + 2 * (b mod a)\<close> (is ?R)
if \<open>0 \<le> a\<close> for a b :: int
proof -
have \<open>((1 + 2 * b) div (2 * a), (1 + 2 * b) mod (2 * a)) = (b div a, 1 + 2 * (b mod a))\<close>
proof (induction rule: euclidean_relation_intI)
case by0
then show ?case
by simp
next
case divides
have \<open>2 dvd (2 * a)\<close>
by simp
then have \<open>2 dvd (1 + 2 * b)\<close>
using \<open>2 * a dvd 1 + 2 * b\<close> by (rule dvd_trans)
then have \<open>2 dvd (1 + b * 2)\<close>
by (simp add: ac_simps)
then have \<open>is_unit (2 :: int)\<close>
by simp
then show ?case
by simp
next
case euclidean_relation
with that have \<open>a > 0\<close>
by simp
moreover have \<open>b mod a < a\<close>
using \<open>a > 0\<close> by simp
then have \<open>1 + 2 * (b mod a) < 2 * a\<close>
by simp
moreover have \<open>2 * (b mod a) + a * (2 * (b div a)) = 2 * (b div a * a + b mod a)\<close>
by (simp only: algebra_simps)
moreover have \<open>0 \<le> 2 * (b mod a)\<close>
using \<open>a > 0\<close> by simp
ultimately show ?case
by (simp add: algebra_simps)
qed
then show ?Q and ?R
by simp_all
qed
lemma neg_zdiv_mult_2: \<open>(1 + 2 * b) div (2 * a) = (b + 1) div a\<close> (is ?Q)
and neg_zmod_mult_2: \<open>(1 + 2 * b) mod (2 * a) = 2 * ((b + 1) mod a) - 1\<close> (is ?R)
if \<open>a \<le> 0\<close> for a b :: int
proof -
have \<open>((1 + 2 * b) div (2 * a), (1 + 2 * b) mod (2 * a)) = ((b + 1) div a, 2 * ((b + 1) mod a) - 1)\<close>
proof (induction rule: euclidean_relation_intI)
case by0
then show ?case
by simp
next
case divides
have \<open>2 dvd (2 * a)\<close>
by simp
then have \<open>2 dvd (1 + 2 * b)\<close>
using \<open>2 * a dvd 1 + 2 * b\<close> by (rule dvd_trans)
then have \<open>2 dvd (1 + b * 2)\<close>
by (simp add: ac_simps)
then have \<open>is_unit (2 :: int)\<close>
by simp
then show ?case
by simp
next
case euclidean_relation
with that have \<open>a < 0\<close>
by simp
moreover have \<open>(b + 1) mod a > a\<close>
using \<open>a < 0\<close> by simp
then have \<open>2 * ((b + 1) mod a) > 1 + 2 * a\<close>
by simp
moreover have \<open>((1 + b) mod a) \<le> 0\<close>
using \<open>a < 0\<close> by simp
then have \<open>2 * ((1 + b) mod a) \<le> 0\<close>
by simp
moreover have \<open>2 * ((1 + b) mod a) + a * (2 * ((1 + b) div a)) =
2 * ((1 + b) div a * a + (1 + b) mod a)\<close>
by (simp only: algebra_simps)
ultimately show ?case
by (simp add: algebra_simps sgn_mult abs_mult)
qed
then show ?Q and ?R
by simp_all
qed
lemma zdiv_numeral_Bit0 [simp]:
\<open>numeral (Num.Bit0 v) div numeral (Num.Bit0 w) =
numeral v div (numeral w :: int)\<close>
unfolding numeral.simps unfolding mult_2 [symmetric]
by (rule div_mult_mult1) simp
lemma zdiv_numeral_Bit1 [simp]:
\<open>numeral (Num.Bit1 v) div numeral (Num.Bit0 w) =
(numeral v div (numeral w :: int))\<close>
unfolding numeral.simps
unfolding mult_2 [symmetric] add.commute [of _ 1]
by (rule pos_zdiv_mult_2) simp
lemma zmod_numeral_Bit0 [simp]:
\<open>numeral (Num.Bit0 v) mod numeral (Num.Bit0 w) =
(2::int) * (numeral v mod numeral w)\<close>
unfolding numeral_Bit0 [of v] numeral_Bit0 [of w]
unfolding mult_2 [symmetric] by (rule mod_mult_mult1)
lemma zmod_numeral_Bit1 [simp]:
\<open>numeral (Num.Bit1 v) mod numeral (Num.Bit0 w) =
2 * (numeral v mod numeral w) + (1::int)\<close>
unfolding numeral_Bit1 [of v] numeral_Bit0 [of w]
unfolding mult_2 [symmetric] add.commute [of _ 1]
by (rule pos_zmod_mult_2) simp
subsection \<open>Code generation\<close>
context
begin
qualified definition divmod_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat \<times> nat"
where "divmod_nat m n = (m div n, m mod n)"
qualified lemma divmod_nat_if [code]:
"divmod_nat m n = (if n = 0 \<or> m < n then (0, m) else
let (q, r) = divmod_nat (m - n) n in (Suc q, r))"
by (simp add: divmod_nat_def prod_eq_iff case_prod_beta not_less le_div_geq le_mod_geq)
qualified lemma [code]:
"m div n = fst (divmod_nat m n)"
"m mod n = snd (divmod_nat m n)"
by (simp_all add: divmod_nat_def)
end
code_identifier
code_module Euclidean_Division \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith
end