src/HOLCF/dlist.thy
author paulson
Wed, 16 Jan 2002 17:53:22 +0100
changeset 12777 70b2651af635
parent 298 3a0485439396
permissions -rw-r--r--
Isar version of ZF/AC

(*  Title: 	HOLCF/dlist.thy

    Author: 	Franz Regensburger
    ID:         $ $
    Copyright   1994 Technische Universitaet Muenchen

Theory for lists
*)

Dlist = Stream2 +

types dlist 1

(* ----------------------------------------------------------------------- *)
(* arity axiom is validated by semantic reasoning                          *)
(* partial ordering is implicit in the isomorphism axioms and their cont.  *)

arities dlist::(pcpo)pcpo

consts

(* ----------------------------------------------------------------------- *)
(* essential constants                                                     *)

dlist_rep	:: "('a dlist) -> (one ++ 'a ** 'a dlist)"
dlist_abs	:: "(one ++ 'a ** 'a dlist) -> ('a dlist)"

(* ----------------------------------------------------------------------- *)
(* abstract constants and auxiliary constants                              *)

dlist_copy	:: "('a dlist -> 'a dlist) ->'a dlist -> 'a dlist"

dnil            :: "'a dlist"
dcons		:: "'a -> 'a dlist -> 'a dlist"
dlist_when	:: " 'b -> ('a -> 'a dlist -> 'b) -> 'a dlist -> 'b"
is_dnil    	:: "'a dlist -> tr"
is_dcons	:: "'a dlist -> tr"
dhd		:: "'a dlist -> 'a"
dtl		:: "'a dlist -> 'a dlist"
dlist_take	:: "nat => 'a dlist -> 'a dlist"
dlist_finite	:: "'a dlist => bool"
dlist_bisim	:: "('a dlist => 'a dlist => bool) => bool"

rules

(* ----------------------------------------------------------------------- *)
(* axiomatization of recursive type 'a dlist                               *)
(* ----------------------------------------------------------------------- *)
(* ('a dlist,dlist_abs) is the initial F-algebra where                     *)
(* F is the locally continuous functor determined by domain equation       *)
(* X = one ++ 'a ** X                                                      *)
(* ----------------------------------------------------------------------- *)
(* dlist_abs is an isomorphism with inverse dlist_rep                      *)
(* identity is the least endomorphism on 'a dlist                          *)

dlist_abs_iso	"dlist_rep[dlist_abs[x]] = x"
dlist_rep_iso	"dlist_abs[dlist_rep[x]] = x"
dlist_copy_def	"dlist_copy == (LAM f. dlist_abs oo \
\ 		(when[sinl][sinr oo (ssplit[LAM x y. x ## f[y]])])\
\                                oo dlist_rep)"
dlist_reach	"(fix[dlist_copy])[x]=x"

(* ----------------------------------------------------------------------- *)
(* properties of additional constants                                      *)
(* ----------------------------------------------------------------------- *)
(* constructors                                                            *)

dnil_def	"dnil  == dlist_abs[sinl[one]]"
dcons_def	"dcons == (LAM x l. dlist_abs[sinr[x##l]])"

(* ----------------------------------------------------------------------- *)
(* discriminator functional                                                *)

dlist_when_def 
"dlist_when == (LAM f1 f2 l.\
\   when[LAM x.f1][ssplit[LAM x l.f2[x][l]]][dlist_rep[l]])"

(* ----------------------------------------------------------------------- *)
(* discriminators and selectors                                            *)

is_dnil_def	"is_dnil  == dlist_when[TT][LAM x l.FF]"
is_dcons_def	"is_dcons == dlist_when[FF][LAM x l.TT]"
dhd_def		"dhd == dlist_when[UU][LAM x l.x]"
dtl_def		"dtl == dlist_when[UU][LAM x l.l]"

(* ----------------------------------------------------------------------- *)
(* the taker for dlists                                                   *)

dlist_take_def "dlist_take == (%n.iterate(n,dlist_copy,UU))"

(* ----------------------------------------------------------------------- *)

dlist_finite_def	"dlist_finite == (%s.? n.dlist_take(n)[s]=s)"

(* ----------------------------------------------------------------------- *)
(* definition of bisimulation is determined by domain equation             *)
(* simplification and rewriting for abstract constants yields def below    *)

dlist_bisim_def "dlist_bisim ==\
\ ( %R.!l1 l2.\
\ 	R(l1,l2) -->\
\  ((l1=UU & l2=UU) |\
\   (l1=dnil & l2=dnil) |\
\   (? x l11 l21. x~=UU & l11~=UU & l21~=UU & \
\               l1=dcons[x][l11] & l2 = dcons[x][l21] & R(l11,l21))))"

end