(* Title: ZF/OrderArith.ML
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1994 University of Cambridge
Towards ordinal arithmetic
*)
(**** Addition of relations -- disjoint sum ****)
(** Rewrite rules. Can be used to obtain introduction rules **)
Goalw [radd_def]
"<Inl(a), Inr(b)> : radd(A,r,B,s) <-> a:A & b:B";
by (Blast_tac 1);
qed "radd_Inl_Inr_iff";
Goalw [radd_def]
"<Inl(a'), Inl(a)> : radd(A,r,B,s) <-> a':A & a:A & <a',a>:r";
by (Blast_tac 1);
qed "radd_Inl_iff";
Goalw [radd_def]
"<Inr(b'), Inr(b)> : radd(A,r,B,s) <-> b':B & b:B & <b',b>:s";
by (Blast_tac 1);
qed "radd_Inr_iff";
Goalw [radd_def]
"<Inr(b), Inl(a)> : radd(A,r,B,s) <-> False";
by (Blast_tac 1);
qed "radd_Inr_Inl_iff";
(** Elimination Rule **)
val major::prems = Goalw [radd_def]
"[| <p',p> : radd(A,r,B,s); \
\ !!x y. [| p'=Inl(x); x:A; p=Inr(y); y:B |] ==> Q; \
\ !!x' x. [| p'=Inl(x'); p=Inl(x); <x',x>: r; x':A; x:A |] ==> Q; \
\ !!y' y. [| p'=Inr(y'); p=Inr(y); <y',y>: s; y':B; y:B |] ==> Q \
\ |] ==> Q";
by (cut_facts_tac [major] 1);
(*Split into the three cases*)
by (REPEAT_FIRST (*can't use safe_tac: don't want hyp_subst_tac*)
(eresolve_tac [CollectE, Pair_inject, conjE, exE, SigmaE, disjE]));
(*Apply each premise to correct subgoal; can't just use fast_tac
because hyp_subst_tac would delete equalities too quickly*)
by (EVERY (map (fn prem =>
EVERY1 [rtac prem, assume_tac, REPEAT o Fast_tac])
prems));
qed "raddE";
(** Type checking **)
Goalw [radd_def] "radd(A,r,B,s) <= (A+B) * (A+B)";
by (rtac Collect_subset 1);
qed "radd_type";
bind_thm ("field_radd", radd_type RS field_rel_subset);
(** Linearity **)
AddIffs [radd_Inl_iff, radd_Inr_iff,
radd_Inl_Inr_iff, radd_Inr_Inl_iff];
Goalw [linear_def]
"[| linear(A,r); linear(B,s) |] ==> linear(A+B,radd(A,r,B,s))";
by (Force_tac 1);
qed "linear_radd";
(** Well-foundedness **)
Goal "[| wf[A](r); wf[B](s) |] ==> wf[A+B](radd(A,r,B,s))";
by (rtac wf_onI2 1);
by (subgoal_tac "ALL x:A. Inl(x): Ba" 1);
(*Proving the lemma, which is needed twice!*)
by (thin_tac "y : A + B" 2);
by (rtac ballI 2);
by (eres_inst_tac [("r","r"),("a","x")] wf_on_induct 2 THEN assume_tac 2);
by (best_tac (claset() addSEs [raddE, bspec RS mp]) 2);
(*Returning to main part of proof*)
by Safe_tac;
by (Blast_tac 1);
by (eres_inst_tac [("r","s"),("a","ya")] wf_on_induct 1 THEN assume_tac 1);
by (best_tac (claset() addSEs [raddE, bspec RS mp]) 1);
qed "wf_on_radd";
Goal "[| wf(r); wf(s) |] ==> wf(radd(field(r),r,field(s),s))";
by (asm_full_simp_tac (simpset() addsimps [wf_iff_wf_on_field]) 1);
by (rtac (field_radd RSN (2, wf_on_subset_A)) 1);
by (REPEAT (ares_tac [wf_on_radd] 1));
qed "wf_radd";
Goal "[| well_ord(A,r); well_ord(B,s) |] ==> \
\ well_ord(A+B, radd(A,r,B,s))";
by (rtac well_ordI 1);
by (asm_full_simp_tac (simpset() addsimps [well_ord_def, wf_on_radd]) 1);
by (asm_full_simp_tac
(simpset() addsimps [well_ord_def, tot_ord_def, linear_radd]) 1);
qed "well_ord_radd";
(** An ord_iso congruence law **)
Goal "[| f: bij(A,C); g: bij(B,D) |] ==> \
\ (lam z:A+B. case(%x. Inl(f`x), %y. Inr(g`y), z)) : bij(A+B, C+D)";
by (res_inst_tac
[("d", "case(%x. Inl(converse(f)`x), %y. Inr(converse(g)`y))")]
lam_bijective 1);
by Safe_tac;
by (ALLGOALS (asm_simp_tac bij_inverse_ss));
qed "sum_bij";
Goalw [ord_iso_def]
"[| f: ord_iso(A,r,A',r'); g: ord_iso(B,s,B',s') |] ==> \
\ (lam z:A+B. case(%x. Inl(f`x), %y. Inr(g`y), z)) \
\ : ord_iso(A+B, radd(A,r,B,s), A'+B', radd(A',r',B',s'))";
by (safe_tac (claset() addSIs [sum_bij]));
(*Do the beta-reductions now*)
by (ALLGOALS (Asm_full_simp_tac));
by Safe_tac;
(*8 subgoals!*)
by (ALLGOALS
(asm_full_simp_tac
(simpset() addcongs [conj_cong] addsimps [bij_is_fun RS apply_type])));
qed "sum_ord_iso_cong";
(*Could we prove an ord_iso result? Perhaps
ord_iso(A+B, radd(A,r,B,s), A Un B, r Un s) *)
Goal "A Int B = 0 ==> \
\ (lam z:A+B. case(%x. x, %y. y, z)) : bij(A+B, A Un B)";
by (res_inst_tac [("d", "%z. if z:A then Inl(z) else Inr(z)")]
lam_bijective 1);
by Auto_tac;
qed "sum_disjoint_bij";
(** Associativity **)
Goal "(lam z:(A+B)+C. case(case(Inl, %y. Inr(Inl(y))), %y. Inr(Inr(y)), z)) \
\ : bij((A+B)+C, A+(B+C))";
by (res_inst_tac [("d", "case(%x. Inl(Inl(x)), case(%x. Inl(Inr(x)), Inr))")]
lam_bijective 1);
by Auto_tac;
qed "sum_assoc_bij";
Goal "(lam z:(A+B)+C. case(case(Inl, %y. Inr(Inl(y))), %y. Inr(Inr(y)), z)) \
\ : ord_iso((A+B)+C, radd(A+B, radd(A,r,B,s), C, t), \
\ A+(B+C), radd(A, r, B+C, radd(B,s,C,t)))";
by (resolve_tac [sum_assoc_bij RS ord_isoI] 1);
by Auto_tac;
qed "sum_assoc_ord_iso";
(**** Multiplication of relations -- lexicographic product ****)
(** Rewrite rule. Can be used to obtain introduction rules **)
Goalw [rmult_def]
"<<a',b'>, <a,b>> : rmult(A,r,B,s) <-> \
\ (<a',a>: r & a':A & a:A & b': B & b: B) | \
\ (<b',b>: s & a'=a & a:A & b': B & b: B)";
by (Blast_tac 1);
qed "rmult_iff";
AddIffs [rmult_iff];
val major::prems = Goal
"[| <<a',b'>, <a,b>> : rmult(A,r,B,s); \
\ [| <a',a>: r; a':A; a:A; b':B; b:B |] ==> Q; \
\ [| <b',b>: s; a:A; a'=a; b':B; b:B |] ==> Q \
\ |] ==> Q";
by (rtac (major RS (rmult_iff RS iffD1) RS disjE) 1);
by (DEPTH_SOLVE (eresolve_tac ([asm_rl, conjE] @ prems) 1));
qed "rmultE";
(** Type checking **)
Goalw [rmult_def] "rmult(A,r,B,s) <= (A*B) * (A*B)";
by (rtac Collect_subset 1);
qed "rmult_type";
bind_thm ("field_rmult", (rmult_type RS field_rel_subset));
(** Linearity **)
val [lina,linb] = goal (the_context ())
"[| linear(A,r); linear(B,s) |] ==> linear(A*B,rmult(A,r,B,s))";
by (rewtac linear_def); (*Note! the premises are NOT rewritten*)
by (REPEAT_FIRST (ares_tac [ballI] ORELSE' etac SigmaE));
by (Asm_simp_tac 1);
by (res_inst_tac [("x","xa"), ("y","xb")] (lina RS linearE) 1);
by (res_inst_tac [("x","ya"), ("y","yb")] (linb RS linearE) 4);
by (REPEAT_SOME (Blast_tac));
qed "linear_rmult";
(** Well-foundedness **)
Goal "[| wf[A](r); wf[B](s) |] ==> wf[A*B](rmult(A,r,B,s))";
by (rtac wf_onI2 1);
by (etac SigmaE 1);
by (etac ssubst 1);
by (subgoal_tac "ALL b:B. <x,b>: Ba" 1);
by (Blast_tac 1);
by (eres_inst_tac [("a","x")] wf_on_induct 1 THEN assume_tac 1);
by (rtac ballI 1);
by (eres_inst_tac [("a","b")] wf_on_induct 1 THEN assume_tac 1);
by (best_tac (claset() addSEs [rmultE, bspec RS mp]) 1);
qed "wf_on_rmult";
Goal "[| wf(r); wf(s) |] ==> wf(rmult(field(r),r,field(s),s))";
by (asm_full_simp_tac (simpset() addsimps [wf_iff_wf_on_field]) 1);
by (rtac (field_rmult RSN (2, wf_on_subset_A)) 1);
by (REPEAT (ares_tac [wf_on_rmult] 1));
qed "wf_rmult";
Goal "[| well_ord(A,r); well_ord(B,s) |] ==> \
\ well_ord(A*B, rmult(A,r,B,s))";
by (rtac well_ordI 1);
by (asm_full_simp_tac (simpset() addsimps [well_ord_def, wf_on_rmult]) 1);
by (asm_full_simp_tac
(simpset() addsimps [well_ord_def, tot_ord_def, linear_rmult]) 1);
qed "well_ord_rmult";
(** An ord_iso congruence law **)
Goal "[| f: bij(A,C); g: bij(B,D) |] \
\ ==> (lam <x,y>:A*B. <f`x, g`y>) : bij(A*B, C*D)";
by (res_inst_tac [("d", "%<x,y>. <converse(f)`x, converse(g)`y>")]
lam_bijective 1);
by Safe_tac;
by (ALLGOALS (asm_simp_tac bij_inverse_ss));
qed "prod_bij";
Goalw [ord_iso_def]
"[| f: ord_iso(A,r,A',r'); g: ord_iso(B,s,B',s') |] \
\ ==> (lam <x,y>:A*B. <f`x, g`y>) \
\ : ord_iso(A*B, rmult(A,r,B,s), A'*B', rmult(A',r',B',s'))";
by (safe_tac (claset() addSIs [prod_bij]));
by (ALLGOALS
(asm_full_simp_tac (simpset() addsimps [bij_is_fun RS apply_type])));
by (blast_tac (claset() addIs [bij_is_inj RS inj_apply_equality]) 1);
qed "prod_ord_iso_cong";
Goal "(lam z:A. <x,z>) : bij(A, {x}*A)";
by (res_inst_tac [("d", "snd")] lam_bijective 1);
by Auto_tac;
qed "singleton_prod_bij";
(*Used??*)
Goal "well_ord({x},xr) ==> \
\ (lam z:A. <x,z>) : ord_iso(A, r, {x}*A, rmult({x}, xr, A, r))";
by (resolve_tac [singleton_prod_bij RS ord_isoI] 1);
by (Asm_simp_tac 1);
by (blast_tac (claset() addDs [well_ord_is_wf RS wf_on_not_refl]) 1);
qed "singleton_prod_ord_iso";
(*Here we build a complicated function term, then simplify it using
case_cong, id_conv, comp_lam, case_case.*)
Goal "a~:C ==> \
\ (lam x:C*B + D. case(%x. x, %y.<a,y>, x)) \
\ : bij(C*B + D, C*B Un {a}*D)";
by (rtac subst_elem 1);
by (resolve_tac [id_bij RS sum_bij RS comp_bij] 1);
by (rtac singleton_prod_bij 1);
by (rtac sum_disjoint_bij 1);
by (Blast_tac 1);
by (asm_simp_tac (simpset() addcongs [case_cong]) 1);
by (resolve_tac [comp_lam RS trans RS sym] 1);
by (fast_tac (claset() addSEs [case_type]) 1);
by (asm_simp_tac (simpset() addsimps [case_case]) 1);
qed "prod_sum_singleton_bij";
Goal "[| a:A; well_ord(A,r) |] ==> \
\ (lam x:pred(A,a,r)*B + pred(B,b,s). case(%x. x, %y.<a,y>, x)) \
\ : ord_iso(pred(A,a,r)*B + pred(B,b,s), \
\ radd(A*B, rmult(A,r,B,s), B, s), \
\ pred(A,a,r)*B Un {a}*pred(B,b,s), rmult(A,r,B,s))";
by (resolve_tac [prod_sum_singleton_bij RS ord_isoI] 1);
by (asm_simp_tac
(simpset() addsimps [pred_iff, well_ord_is_wf RS wf_on_not_refl]) 1);
by (auto_tac (claset() addSEs [well_ord_is_wf RS wf_on_asym, predE],
simpset()));
qed "prod_sum_singleton_ord_iso";
(** Distributive law **)
Goal "(lam <x,z>:(A+B)*C. case(%y. Inl(<y,z>), %y. Inr(<y,z>), x)) \
\ : bij((A+B)*C, (A*C)+(B*C))";
by (res_inst_tac
[("d", "case(%<x,y>.<Inl(x),y>, %<x,y>.<Inr(x),y>)")] lam_bijective 1);
by Auto_tac;
qed "sum_prod_distrib_bij";
Goal "(lam <x,z>:(A+B)*C. case(%y. Inl(<y,z>), %y. Inr(<y,z>), x)) \
\ : ord_iso((A+B)*C, rmult(A+B, radd(A,r,B,s), C, t), \
\ (A*C)+(B*C), radd(A*C, rmult(A,r,C,t), B*C, rmult(B,s,C,t)))";
by (resolve_tac [sum_prod_distrib_bij RS ord_isoI] 1);
by Auto_tac;
qed "sum_prod_distrib_ord_iso";
(** Associativity **)
Goal "(lam <<x,y>, z>:(A*B)*C. <x,<y,z>>) : bij((A*B)*C, A*(B*C))";
by (res_inst_tac [("d", "%<x, <y,z>>. <<x,y>, z>")] lam_bijective 1);
by Auto_tac;
qed "prod_assoc_bij";
Goal "(lam <<x,y>, z>:(A*B)*C. <x,<y,z>>) \
\ : ord_iso((A*B)*C, rmult(A*B, rmult(A,r,B,s), C, t), \
\ A*(B*C), rmult(A, r, B*C, rmult(B,s,C,t)))";
by (resolve_tac [prod_assoc_bij RS ord_isoI] 1);
by Auto_tac;
qed "prod_assoc_ord_iso";
(**** Inverse image of a relation ****)
(** Rewrite rule **)
Goalw [rvimage_def] "<a,b> : rvimage(A,f,r) <-> <f`a,f`b>: r & a:A & b:A";
by (Blast_tac 1);
qed "rvimage_iff";
(** Type checking **)
Goalw [rvimage_def] "rvimage(A,f,r) <= A*A";
by (rtac Collect_subset 1);
qed "rvimage_type";
bind_thm ("field_rvimage", (rvimage_type RS field_rel_subset));
Goalw [rvimage_def] "rvimage(A,f, converse(r)) = converse(rvimage(A,f,r))";
by (Blast_tac 1);
qed "rvimage_converse";
(** Partial Ordering Properties **)
Goalw [irrefl_def, rvimage_def]
"[| f: inj(A,B); irrefl(B,r) |] ==> irrefl(A, rvimage(A,f,r))";
by (blast_tac (claset() addIs [inj_is_fun RS apply_type]) 1);
qed "irrefl_rvimage";
Goalw [trans_on_def, rvimage_def]
"[| f: inj(A,B); trans[B](r) |] ==> trans[A](rvimage(A,f,r))";
by (blast_tac (claset() addIs [inj_is_fun RS apply_type]) 1);
qed "trans_on_rvimage";
Goalw [part_ord_def]
"[| f: inj(A,B); part_ord(B,r) |] ==> part_ord(A, rvimage(A,f,r))";
by (blast_tac (claset() addSIs [irrefl_rvimage, trans_on_rvimage]) 1);
qed "part_ord_rvimage";
(** Linearity **)
val [finj,lin] = goalw (the_context ()) [inj_def]
"[| f: inj(A,B); linear(B,r) |] ==> linear(A,rvimage(A,f,r))";
by (rewtac linear_def); (*Note! the premises are NOT rewritten*)
by (REPEAT_FIRST (ares_tac [ballI]));
by (asm_simp_tac (simpset() addsimps [rvimage_iff]) 1);
by (cut_facts_tac [finj] 1);
by (res_inst_tac [("x","f`x"), ("y","f`y")] (lin RS linearE) 1);
by (REPEAT_SOME (blast_tac (claset() addIs [apply_funtype])));
qed "linear_rvimage";
Goalw [tot_ord_def]
"[| f: inj(A,B); tot_ord(B,r) |] ==> tot_ord(A, rvimage(A,f,r))";
by (blast_tac (claset() addSIs [part_ord_rvimage, linear_rvimage]) 1);
qed "tot_ord_rvimage";
(** Well-foundedness **)
(*Not sure if wf_on_rvimage could be proved from this!*)
Goal "wf(r) ==> wf(rvimage(A,f,r))";
by (full_simp_tac (simpset() addsimps [rvimage_def, wf_eq_minimal]) 1);
by (Clarify_tac 1);
by (subgoal_tac "EX w. w : {w: {f`x. x:Q}. EX x. x: Q & (f`x = w)}" 1);
by (blast_tac (claset() delrules [allE]) 2);
by (etac allE 1);
by (mp_tac 1);
by (Blast_tac 1);
qed "wf_rvimage";
AddSIs [wf_rvimage];
Goal "[| f: A->B; wf[B](r) |] ==> wf[A](rvimage(A,f,r))";
by (rtac wf_onI2 1);
by (subgoal_tac "ALL z:A. f`z=f`y --> z: Ba" 1);
by (Blast_tac 1);
by (eres_inst_tac [("a","f`y")] wf_on_induct 1);
by (blast_tac (claset() addSIs [apply_funtype]) 1);
by (blast_tac (claset() addSIs [apply_funtype]
addSDs [rvimage_iff RS iffD1]) 1);
qed "wf_on_rvimage";
(*Note that we need only wf[A](...) and linear(A,...) to get the result!*)
Goal "[| f: inj(A,B); well_ord(B,r) |] ==> well_ord(A, rvimage(A,f,r))";
by (rtac well_ordI 1);
by (rewrite_goals_tac [well_ord_def, tot_ord_def]);
by (blast_tac (claset() addSIs [wf_on_rvimage, inj_is_fun]) 1);
by (blast_tac (claset() addSIs [linear_rvimage]) 1);
qed "well_ord_rvimage";
Goalw [ord_iso_def]
"f: bij(A,B) ==> f: ord_iso(A, rvimage(A,f,s), B, s)";
by (asm_full_simp_tac (simpset() addsimps [rvimage_iff]) 1);
qed "ord_iso_rvimage";
Goalw [ord_iso_def, rvimage_def]
"f: ord_iso(A,r, B,s) ==> rvimage(A,f,s) = r Int A*A";
by (Blast_tac 1);
qed "ord_iso_rvimage_eq";
(** The "measure" relation is useful with wfrec **)
Goal "measure(A,f) = rvimage(A,Lambda(A,f),Memrel(Collect(RepFun(A,f),Ord)))";
by (simp_tac (simpset() addsimps [measure_def, rvimage_def, Memrel_iff]) 1);
by (rtac equalityI 1);
by Auto_tac;
by (auto_tac (claset() addIs [Ord_in_Ord], simpset() addsimps [lt_def]));
qed "measure_eq_rvimage_Memrel";
Goal "wf(measure(A,f))";
by (simp_tac (simpset() addsimps [measure_eq_rvimage_Memrel, wf_Memrel,
wf_rvimage]) 1);
qed "wf_measure";
AddIffs [wf_measure];
Goal "<x,y> : measure(A,f) <-> x:A & y:A & f(x)<f(y)";
by (simp_tac (simpset() addsimps [measure_def]) 1);
qed "measure_iff";
AddIffs [measure_iff];