(* Title: HOL/IMP/Compiler.thy
ID: $Id$
Author: Tobias Nipkow, TUM
Copyright 1996 TUM
A simple compiler for a simplistic machine.
*)
theory Compiler = Natural:
datatype instr = ASIN loc aexp | JMPF bexp nat | JMPB nat
consts stepa1 :: "instr list => ((state*nat) * (state*nat))set"
syntax
"@stepa1" :: "[instr list,state,nat,state,nat] => bool"
("_ |- <_,_>/ -1-> <_,_>" [50,0,0,0,0] 50)
"@stepa" :: "[instr list,state,nat,state,nat] => bool"
("_ |-/ <_,_>/ -*-> <_,_>" [50,0,0,0,0] 50)
translations "P |- <s,m> -1-> <t,n>" == "((s,m),t,n) : stepa1 P"
"P |- <s,m> -*-> <t,n>" == "((s,m),t,n) : ((stepa1 P)^*)"
inductive "stepa1 P"
intros
ASIN:
"\<lbrakk> n<size P; P!n = ASIN x a \<rbrakk> \<Longrightarrow> P |- <s,n> -1-> <s[x::= a s],Suc n>"
JMPFT:
"\<lbrakk> n<size P; P!n = JMPF b i; b s \<rbrakk> \<Longrightarrow> P |- <s,n> -1-> <s,Suc n>"
JMPFF:
"\<lbrakk> n<size P; P!n = JMPF b i; ~b s; m=n+i \<rbrakk> \<Longrightarrow> P |- <s,n> -1-> <s,m>"
JMPB:
"\<lbrakk> n<size P; P!n = JMPB i; i <= n \<rbrakk> \<Longrightarrow> P |- <s,n> -1-> <s,n-i>"
consts compile :: "com => instr list"
primrec
"compile SKIP = []"
"compile (x:==a) = [ASIN x a]"
"compile (c1;c2) = compile c1 @ compile c2"
"compile (IF b THEN c1 ELSE c2) =
[JMPF b (length(compile c1)+2)] @ compile c1 @
[JMPF (%x. False) (length(compile c2)+1)] @ compile c2"
"compile (WHILE b DO c) = [JMPF b (length(compile c)+2)] @ compile c @
[JMPB (length(compile c)+1)]"
declare nth_append[simp];
(* Lemmas for lifting an execution into a prefix and suffix
of instructions; only needed for the first proof *)
lemma app_right_1:
"is1 |- <s1,i1> -1-> <s2,i2> \<Longrightarrow> is1 @ is2 |- <s1,i1> -1-> <s2,i2>"
apply(erule stepa1.induct);
apply (simp add:ASIN)
apply (force intro!:JMPFT)
apply (force intro!:JMPFF)
apply (simp add: JMPB)
done
lemma app_left_1:
"is2 |- <s1,i1> -1-> <s2,i2> \<Longrightarrow>
is1 @ is2 |- <s1,size is1+i1> -1-> <s2,size is1+i2>"
apply(erule stepa1.induct);
apply (simp add:ASIN)
apply (fastsimp intro!:JMPFT)
apply (fastsimp intro!:JMPFF)
apply (simp add: JMPB)
done
lemma app_right:
"is1 |- <s1,i1> -*-> <s2,i2> \<Longrightarrow> is1 @ is2 |- <s1,i1> -*-> <s2,i2>"
apply(erule rtrancl_induct2);
apply simp
apply(blast intro:app_right_1 rtrancl_trans)
done
lemma app_left:
"is2 |- <s1,i1> -*-> <s2,i2> \<Longrightarrow>
is1 @ is2 |- <s1,size is1+i1> -*-> <s2,size is1+i2>"
apply(erule rtrancl_induct2);
apply simp
apply(blast intro:app_left_1 rtrancl_trans)
done
lemma app_left2:
"\<lbrakk> is2 |- <s1,i1> -*-> <s2,i2>; j1 = size is1+i1; j2 = size is1+i2 \<rbrakk> \<Longrightarrow>
is1 @ is2 |- <s1,j1> -*-> <s2,j2>"
by (simp add:app_left)
lemma app1_left:
"is |- <s1,i1> -*-> <s2,i2> \<Longrightarrow>
instr # is |- <s1,Suc i1> -*-> <s2,Suc i2>"
by(erule app_left[of _ _ _ _ _ "[instr]",simplified])
(* The first proof; statement very intuitive,
but application of induction hypothesis requires the above lifting lemmas
*)
theorem "<c,s> -c-> t ==> compile c |- <s,0> -*-> <t,length(compile c)>"
apply(erule evalc.induct);
apply simp;
apply(force intro!: ASIN);
apply simp
apply(rule rtrancl_trans)
apply(erule app_right)
apply(erule app_left[of _ 0,simplified])
(* IF b THEN c0 ELSE c1; case b is true *)
apply(simp);
(* execute JMPF: *)
apply (rule rtrancl_into_rtrancl2)
apply(force intro!: JMPFT);
(* execute compile c0: *)
apply(rule app1_left)
apply(rule rtrancl_into_rtrancl);
apply(erule app_right)
(* execute JMPF: *)
apply(force intro!: JMPFF);
(* end of case b is true *)
apply simp
apply (rule rtrancl_into_rtrancl2)
apply(force intro!: JMPFF)
apply(force intro!: app_left2 app1_left)
(* WHILE False *)
apply(force intro: JMPFF);
(* WHILE True *)
apply(simp)
apply(rule rtrancl_into_rtrancl2);
apply(force intro!: JMPFT);
apply(rule rtrancl_trans);
apply(rule app1_left)
apply(erule app_right)
apply(rule rtrancl_into_rtrancl2);
apply(force intro!: JMPB)
apply(simp)
done
(* Second proof; statement is generalized to cater for prefixes and suffixes;
needs none of the lifting lemmas, but instantiations of pre/suffix.
*)
theorem "<c,s> -c-> t ==>
!a z. a@compile c@z |- <s,length a> -*-> <t,length a + length(compile c)>";
apply(erule evalc.induct);
apply simp;
apply(force intro!: ASIN);
apply(intro strip);
apply(erule_tac x = a in allE);
apply(erule_tac x = "a@compile c0" in allE);
apply(erule_tac x = "compile c1@z" in allE);
apply(erule_tac x = z in allE);
apply(simp add:add_assoc[THEN sym]);
apply(blast intro:rtrancl_trans);
(* IF b THEN c0 ELSE c1; case b is true *)
apply(intro strip);
(* instantiate assumption sufficiently for later: *)
apply(erule_tac x = "a@[?I]" in allE);
apply(simp);
(* execute JMPF: *)
apply(rule rtrancl_into_rtrancl2);
apply(force intro!: JMPFT);
(* execute compile c0: *)
apply(rule rtrancl_trans);
apply(erule allE);
apply assumption;
(* execute JMPF: *)
apply(rule r_into_rtrancl);
apply(force intro!: JMPFF);
(* end of case b is true *)
apply(intro strip);
apply(erule_tac x = "a@[?I]@compile c0@[?J]" in allE);
apply(simp add:add_assoc);
apply(rule rtrancl_into_rtrancl2);
apply(force intro!: JMPFF);
apply(blast);
apply(force intro: JMPFF);
apply(intro strip);
apply(erule_tac x = "a@[?I]" in allE);
apply(erule_tac x = a in allE);
apply(simp);
apply(rule rtrancl_into_rtrancl2);
apply(force intro!: JMPFT);
apply(rule rtrancl_trans);
apply(erule allE);
apply assumption;
apply(rule rtrancl_into_rtrancl2);
apply(force intro!: JMPB);
apply(simp);
done
(* Missing: the other direction! *)
end