(* Title: HOL/TLA/Intensional.thy
Author: Stephan Merz
Copyright: 1998 University of Munich
*)
section \<open>A framework for "intensional" (possible-world based) logics
on top of HOL, with lifting of constants and functions\<close>
theory Intensional
imports Main
begin
class world
(** abstract syntax **)
type_synonym ('w,'a) expr = "'w \<Rightarrow> 'a" (* intention: 'w::world, 'a::type *)
type_synonym 'w form = "('w, bool) expr"
definition Valid :: "('w::world) form \<Rightarrow> bool"
where "Valid A \<equiv> \<forall>w. A w"
definition const :: "'a \<Rightarrow> ('w::world, 'a) expr"
where unl_con: "const c w \<equiv> c"
definition lift :: "['a \<Rightarrow> 'b, ('w::world, 'a) expr] \<Rightarrow> ('w,'b) expr"
where unl_lift: "lift f x w \<equiv> f (x w)"
definition lift2 :: "['a \<Rightarrow> 'b \<Rightarrow> 'c, ('w::world,'a) expr, ('w,'b) expr] \<Rightarrow> ('w,'c) expr"
where unl_lift2: "lift2 f x y w \<equiv> f (x w) (y w)"
definition lift3 :: "['a \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'd, ('w::world,'a) expr, ('w,'b) expr, ('w,'c) expr] \<Rightarrow> ('w,'d) expr"
where unl_lift3: "lift3 f x y z w \<equiv> f (x w) (y w) (z w)"
(* "Rigid" quantification (logic level) *)
definition RAll :: "('a \<Rightarrow> ('w::world) form) \<Rightarrow> 'w form" (binder "Rall " 10)
where unl_Rall: "(Rall x. A x) w \<equiv> \<forall>x. A x w"
definition REx :: "('a \<Rightarrow> ('w::world) form) \<Rightarrow> 'w form" (binder "Rex " 10)
where unl_Rex: "(Rex x. A x) w \<equiv> \<exists>x. A x w"
definition REx1 :: "('a \<Rightarrow> ('w::world) form) \<Rightarrow> 'w form" (binder "Rex! " 10)
where unl_Rex1: "(Rex! x. A x) w \<equiv> \<exists>!x. A x w"
(** concrete syntax **)
nonterminal lift and liftargs
syntax
"" :: "id \<Rightarrow> lift" ("_")
"" :: "longid \<Rightarrow> lift" ("_")
"" :: "var \<Rightarrow> lift" ("_")
"_applC" :: "[lift, cargs] \<Rightarrow> lift" ("(1_/ _)" [1000, 1000] 999)
"" :: "lift \<Rightarrow> lift" ("'(_')")
"_lambda" :: "[idts, 'a] \<Rightarrow> lift" ("(3\<lambda>_./ _)" [0, 3] 3)
"_constrain" :: "[lift, type] \<Rightarrow> lift" ("(_::_)" [4, 0] 3)
"" :: "lift \<Rightarrow> liftargs" ("_")
"_liftargs" :: "[lift, liftargs] \<Rightarrow> liftargs" ("_,/ _")
"_Valid" :: "lift \<Rightarrow> bool" ("(\<turnstile> _)" 5)
"_holdsAt" :: "['a, lift] \<Rightarrow> bool" ("(_ \<Turnstile> _)" [100,10] 10)
(* Syntax for lifted expressions outside the scope of \<turnstile> or |= *)
"_LIFT" :: "lift \<Rightarrow> 'a" ("LIFT _")
(* generic syntax for lifted constants and functions *)
"_const" :: "'a \<Rightarrow> lift" ("(#_)" [1000] 999)
"_lift" :: "['a, lift] \<Rightarrow> lift" ("(_<_>)" [1000] 999)
"_lift2" :: "['a, lift, lift] \<Rightarrow> lift" ("(_<_,/ _>)" [1000] 999)
"_lift3" :: "['a, lift, lift, lift] \<Rightarrow> lift" ("(_<_,/ _,/ _>)" [1000] 999)
(* concrete syntax for common infix functions: reuse same symbol *)
"_liftEqu" :: "[lift, lift] \<Rightarrow> lift" ("(_ =/ _)" [50,51] 50)
"_liftNeq" :: "[lift, lift] \<Rightarrow> lift" ("(_ \<noteq>/ _)" [50,51] 50)
"_liftNot" :: "lift \<Rightarrow> lift" ("(\<not> _)" [40] 40)
"_liftAnd" :: "[lift, lift] \<Rightarrow> lift" ("(_ \<and>/ _)" [36,35] 35)
"_liftOr" :: "[lift, lift] \<Rightarrow> lift" ("(_ \<or>/ _)" [31,30] 30)
"_liftImp" :: "[lift, lift] \<Rightarrow> lift" ("(_ \<longrightarrow>/ _)" [26,25] 25)
"_liftIf" :: "[lift, lift, lift] \<Rightarrow> lift" ("(if (_)/ then (_)/ else (_))" 10)
"_liftPlus" :: "[lift, lift] \<Rightarrow> lift" ("(_ +/ _)" [66,65] 65)
"_liftMinus" :: "[lift, lift] \<Rightarrow> lift" ("(_ -/ _)" [66,65] 65)
"_liftTimes" :: "[lift, lift] \<Rightarrow> lift" ("(_ */ _)" [71,70] 70)
"_liftDiv" :: "[lift, lift] \<Rightarrow> lift" ("(_ div _)" [71,70] 70)
"_liftMod" :: "[lift, lift] \<Rightarrow> lift" ("(_ mod _)" [71,70] 70)
"_liftLess" :: "[lift, lift] \<Rightarrow> lift" ("(_/ < _)" [50, 51] 50)
"_liftLeq" :: "[lift, lift] \<Rightarrow> lift" ("(_/ \<le> _)" [50, 51] 50)
"_liftMem" :: "[lift, lift] \<Rightarrow> lift" ("(_/ \<in> _)" [50, 51] 50)
"_liftNotMem" :: "[lift, lift] \<Rightarrow> lift" ("(_/ \<notin> _)" [50, 51] 50)
"_liftFinset" :: "liftargs \<Rightarrow> lift" ("{(_)}")
(** TODO: syntax for lifted collection / comprehension **)
"_liftPair" :: "[lift,liftargs] \<Rightarrow> lift" ("(1'(_,/ _'))")
(* infix syntax for list operations *)
"_liftCons" :: "[lift, lift] \<Rightarrow> lift" ("(_ #/ _)" [65,66] 65)
"_liftApp" :: "[lift, lift] \<Rightarrow> lift" ("(_ @/ _)" [65,66] 65)
"_liftList" :: "liftargs \<Rightarrow> lift" ("[(_)]")
(* Rigid quantification (syntax level) *)
"_RAll" :: "[idts, lift] \<Rightarrow> lift" ("(3\<forall>_./ _)" [0, 10] 10)
"_REx" :: "[idts, lift] \<Rightarrow> lift" ("(3\<exists>_./ _)" [0, 10] 10)
"_REx1" :: "[idts, lift] \<Rightarrow> lift" ("(3\<exists>!_./ _)" [0, 10] 10)
translations
"_const" == "CONST const"
"_lift" == "CONST lift"
"_lift2" == "CONST lift2"
"_lift3" == "CONST lift3"
"_Valid" == "CONST Valid"
"_RAll x A" == "Rall x. A"
"_REx x A" == "Rex x. A"
"_REx1 x A" == "Rex! x. A"
"w \<Turnstile> A" => "A w"
"LIFT A" => "A::_\<Rightarrow>_"
"_liftEqu" == "_lift2 (=)"
"_liftNeq u v" == "_liftNot (_liftEqu u v)"
"_liftNot" == "_lift (CONST Not)"
"_liftAnd" == "_lift2 (\<and>)"
"_liftOr" == "_lift2 (\<or>)"
"_liftImp" == "_lift2 (\<longrightarrow>)"
"_liftIf" == "_lift3 (CONST If)"
"_liftPlus" == "_lift2 (+)"
"_liftMinus" == "_lift2 (-)"
"_liftTimes" == "_lift2 ((*))"
"_liftDiv" == "_lift2 (div)"
"_liftMod" == "_lift2 (mod)"
"_liftLess" == "_lift2 (<)"
"_liftLeq" == "_lift2 (\<le>)"
"_liftMem" == "_lift2 (\<in>)"
"_liftNotMem x xs" == "_liftNot (_liftMem x xs)"
"_liftFinset (_liftargs x xs)" == "_lift2 (CONST insert) x (_liftFinset xs)"
"_liftFinset x" == "_lift2 (CONST insert) x (_const {})"
"_liftPair x (_liftargs y z)" == "_liftPair x (_liftPair y z)"
"_liftPair" == "_lift2 (CONST Pair)"
"_liftCons" == "CONST lift2 (CONST Cons)"
"_liftApp" == "CONST lift2 (@)"
"_liftList (_liftargs x xs)" == "_liftCons x (_liftList xs)"
"_liftList x" == "_liftCons x (_const [])"
"w \<Turnstile> \<not>A" <= "_liftNot A w"
"w \<Turnstile> A \<and> B" <= "_liftAnd A B w"
"w \<Turnstile> A \<or> B" <= "_liftOr A B w"
"w \<Turnstile> A \<longrightarrow> B" <= "_liftImp A B w"
"w \<Turnstile> u = v" <= "_liftEqu u v w"
"w \<Turnstile> \<forall>x. A" <= "_RAll x A w"
"w \<Turnstile> \<exists>x. A" <= "_REx x A w"
"w \<Turnstile> \<exists>!x. A" <= "_REx1 x A w"
subsection \<open>Lemmas and tactics for "intensional" logics.\<close>
lemmas intensional_rews [simp] =
unl_con unl_lift unl_lift2 unl_lift3 unl_Rall unl_Rex unl_Rex1
lemma inteq_reflection: "\<turnstile> x=y \<Longrightarrow> (x==y)"
apply (unfold Valid_def unl_lift2)
apply (rule eq_reflection)
apply (rule ext)
apply (erule spec)
done
lemma intI [intro!]: "(\<And>w. w \<Turnstile> A) \<Longrightarrow> \<turnstile> A"
apply (unfold Valid_def)
apply (rule allI)
apply (erule meta_spec)
done
lemma intD [dest]: "\<turnstile> A \<Longrightarrow> w \<Turnstile> A"
apply (unfold Valid_def)
apply (erule spec)
done
(** Lift usual HOL simplifications to "intensional" level. **)
lemma int_simps:
"\<turnstile> (x=x) = #True"
"\<turnstile> (\<not>#True) = #False" "\<turnstile> (\<not>#False) = #True" "\<turnstile> (\<not>\<not> P) = P"
"\<turnstile> ((\<not>P) = P) = #False" "\<turnstile> (P = (\<not>P)) = #False"
"\<turnstile> (P \<noteq> Q) = (P = (\<not>Q))"
"\<turnstile> (#True=P) = P" "\<turnstile> (P=#True) = P"
"\<turnstile> (#True \<longrightarrow> P) = P" "\<turnstile> (#False \<longrightarrow> P) = #True"
"\<turnstile> (P \<longrightarrow> #True) = #True" "\<turnstile> (P \<longrightarrow> P) = #True"
"\<turnstile> (P \<longrightarrow> #False) = (\<not>P)" "\<turnstile> (P \<longrightarrow> \<not>P) = (\<not>P)"
"\<turnstile> (P \<and> #True) = P" "\<turnstile> (#True \<and> P) = P"
"\<turnstile> (P \<and> #False) = #False" "\<turnstile> (#False \<and> P) = #False"
"\<turnstile> (P \<and> P) = P" "\<turnstile> (P \<and> \<not>P) = #False" "\<turnstile> (\<not>P \<and> P) = #False"
"\<turnstile> (P \<or> #True) = #True" "\<turnstile> (#True \<or> P) = #True"
"\<turnstile> (P \<or> #False) = P" "\<turnstile> (#False \<or> P) = P"
"\<turnstile> (P \<or> P) = P" "\<turnstile> (P \<or> \<not>P) = #True" "\<turnstile> (\<not>P \<or> P) = #True"
"\<turnstile> (\<forall>x. P) = P" "\<turnstile> (\<exists>x. P) = P"
"\<turnstile> (\<not>Q \<longrightarrow> \<not>P) = (P \<longrightarrow> Q)"
"\<turnstile> (P\<or>Q \<longrightarrow> R) = ((P\<longrightarrow>R)\<and>(Q\<longrightarrow>R))"
apply (unfold Valid_def intensional_rews)
apply blast+
done
declare int_simps [THEN inteq_reflection, simp]
lemma TrueW [simp]: "\<turnstile> #True"
by (simp add: Valid_def unl_con)
(* ======== Functions to "unlift" intensional implications into HOL rules ====== *)
ML \<open>
(* Basic unlifting introduces a parameter "w" and applies basic rewrites, e.g.
\<turnstile> F = G becomes F w = G w
\<turnstile> F \<longrightarrow> G becomes F w \<longrightarrow> G w
*)
fun int_unlift ctxt th =
rewrite_rule ctxt @{thms intensional_rews} (th RS @{thm intD} handle THM _ => th);
(* Turn \<turnstile> F = G into meta-level rewrite rule F == G *)
fun int_rewrite ctxt th =
zero_var_indexes (rewrite_rule ctxt @{thms intensional_rews} (th RS @{thm inteq_reflection}))
(* flattening turns "\<longrightarrow>" into "\<Longrightarrow>" and eliminates conjunctions in the
antecedent. For example,
P & Q \<longrightarrow> (R | S \<longrightarrow> T) becomes \<lbrakk> P; Q; R | S \<rbrakk> \<Longrightarrow> T
Flattening can be useful with "intensional" lemmas (after unlifting).
Naive resolution with mp and conjI may run away because of higher-order
unification, therefore the code is a little awkward.
*)
fun flatten t =
let
(* analogous to RS, but using matching instead of resolution *)
fun matchres tha i thb =
case Seq.chop 2 (Thm.biresolution NONE true [(false,tha)] i thb) of
([th],_) => th
| ([],_) => raise THM("matchres: no match", i, [tha,thb])
| _ => raise THM("matchres: multiple unifiers", i, [tha,thb])
(* match tha with some premise of thb *)
fun matchsome tha thb =
let fun hmatch 0 = raise THM("matchsome: no match", 0, [tha,thb])
| hmatch n = matchres tha n thb handle THM _ => hmatch (n-1)
in hmatch (Thm.nprems_of thb) end
fun hflatten t =
case Thm.concl_of t of
Const _ $ (Const (\<^const_name>\<open>HOL.implies\<close>, _) $ _ $ _) => hflatten (t RS mp)
| _ => (hflatten (matchsome conjI t)) handle THM _ => zero_var_indexes t
in
hflatten t
end
fun int_use ctxt th =
case Thm.concl_of th of
Const _ $ (Const (\<^const_name>\<open>Valid\<close>, _) $ _) =>
(flatten (int_unlift ctxt th) handle THM _ => th)
| _ => th
\<close>
attribute_setup int_unlift =
\<open>Scan.succeed (Thm.rule_attribute [] (int_unlift o Context.proof_of))\<close>
attribute_setup int_rewrite =
\<open>Scan.succeed (Thm.rule_attribute [] (int_rewrite o Context.proof_of))\<close>
attribute_setup flatten =
\<open>Scan.succeed (Thm.rule_attribute [] (K flatten))\<close>
attribute_setup int_use =
\<open>Scan.succeed (Thm.rule_attribute [] (int_use o Context.proof_of))\<close>
lemma Not_Rall: "\<turnstile> (\<not>(\<forall>x. F x)) = (\<exists>x. \<not>F x)"
by (simp add: Valid_def)
lemma Not_Rex: "\<turnstile> (\<not> (\<exists>x. F x)) = (\<forall>x. \<not> F x)"
by (simp add: Valid_def)
end