src/HOL/WF_Rel.thy
author nipkow
Fri, 16 May 1997 17:40:41 +0200
changeset 3222 726a9b069947
parent 3193 fafc7e815b70
child 3237 4da86d44de33
permissions -rw-r--r--
Distributed Psubset stuff to basic set theory files, incl Finite. Added stuff by bu.

(*  Title:      HOL/WF_Rel
    ID:         $Id$
    Author:     Konrad Slind
    Copyright   1995 TU Munich

Derived wellfounded relations: inverse image, relational product, measure, ...
*)

WF_Rel = Finite +
consts
 inv_image  :: "('b * 'b)set => ('a => 'b) => ('a * 'a)set"
 measure    :: "('a => nat) => ('a * 'a)set"
    "**"    :: "[('a*'a)set, ('b*'b)set] => (('a*'b)*('a*'b))set" (infixl 70)
   rprod    :: "[('a*'a)set, ('b*'b)set] => (('a*'b)*('a*'b))set"
   finite_psubset  :: "('a set * 'a set) set"

defs
  inv_image_def "inv_image r f == {(x,y). (f(x), f(y)) : r}"

  measure_def   "measure == inv_image (trancl pred_nat)"

  lex_prod_def  "ra**rb == {p. ? a a' b b'. 
                                p = ((a,b),(a',b')) & 
                               ((a,a') : ra | a=a' & (b,b') : rb)}"

  rprod_def     "rprod ra rb == {p. ? a a' b b'. 
                                p = ((a,b),(a',b')) & 
                               ((a,a') : ra & (b,b') : rb)}"

  (* finite proper subset*)
  finite_psubset_def "finite_psubset == {(A,B). A < B & finite B}"
end