(* Title: CCL/gfp
ID: $Id$
Modified version of
Title: HOL/gfp
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1993 University of Cambridge
For gfp.thy. The Knaster-Tarski Theorem for greatest fixed points.
*)
open Gfp;
(*** Proof of Knaster-Tarski Theorem using gfp ***)
(* gfp(f) is the least upper bound of {u. u <= f(u)} *)
val prems = goalw Gfp.thy [gfp_def] "[| A <= f(A) |] ==> A <= gfp(f)";
by (rtac (CollectI RS Union_upper) 1);
by (resolve_tac prems 1);
qed "gfp_upperbound";
val prems = goalw Gfp.thy [gfp_def]
"[| !!u. u <= f(u) ==> u<=A |] ==> gfp(f) <= A";
by (REPEAT (ares_tac ([Union_least]@prems) 1));
by (etac CollectD 1);
qed "gfp_least";
val [mono] = goal Gfp.thy "mono(f) ==> gfp(f) <= f(gfp(f))";
by (EVERY1 [rtac gfp_least, rtac subset_trans, atac,
rtac (mono RS monoD), rtac gfp_upperbound, atac]);
qed "gfp_lemma2";
val [mono] = goal Gfp.thy "mono(f) ==> f(gfp(f)) <= gfp(f)";
by (EVERY1 [rtac gfp_upperbound, rtac (mono RS monoD),
rtac gfp_lemma2, rtac mono]);
qed "gfp_lemma3";
val [mono] = goal Gfp.thy "mono(f) ==> gfp(f) = f(gfp(f))";
by (REPEAT (resolve_tac [equalityI,gfp_lemma2,gfp_lemma3,mono] 1));
qed "gfp_Tarski";
(*** Coinduction rules for greatest fixed points ***)
(*weak version*)
val prems = goal Gfp.thy
"[| a: A; A <= f(A) |] ==> a : gfp(f)";
by (rtac (gfp_upperbound RS subsetD) 1);
by (REPEAT (ares_tac prems 1));
qed "coinduct";
val [prem,mono] = goal Gfp.thy
"[| A <= f(A) Un gfp(f); mono(f) |] ==> \
\ A Un gfp(f) <= f(A Un gfp(f))";
by (rtac subset_trans 1);
by (rtac (mono RS mono_Un) 2);
by (rtac (mono RS gfp_Tarski RS subst) 1);
by (rtac (prem RS Un_least) 1);
by (rtac Un_upper2 1);
qed "coinduct2_lemma";
(*strong version, thanks to Martin Coen*)
val ainA::prems = goal Gfp.thy
"[| a: A; A <= f(A) Un gfp(f); mono(f) |] ==> a : gfp(f)";
by (rtac coinduct 1);
by (rtac (prems MRS coinduct2_lemma) 2);
by (resolve_tac [ainA RS UnI1] 1);
qed "coinduct2";
(*** Even Stronger version of coinduct [by Martin Coen]
- instead of the condition A <= f(A)
consider A <= (f(A) Un f(f(A)) ...) Un gfp(A) ***)
val [prem] = goal Gfp.thy "mono(f) ==> mono(%x. f(x) Un A Un B)";
by (REPEAT (ares_tac [subset_refl, monoI, Un_mono, prem RS monoD] 1));
qed "coinduct3_mono_lemma";
val [prem,mono] = goal Gfp.thy
"[| A <= f(lfp(%x. f(x) Un A Un gfp(f))); mono(f) |] ==> \
\ lfp(%x. f(x) Un A Un gfp(f)) <= f(lfp(%x. f(x) Un A Un gfp(f)))";
by (rtac subset_trans 1);
by (rtac (mono RS coinduct3_mono_lemma RS lfp_lemma3) 1);
by (rtac (Un_least RS Un_least) 1);
by (rtac subset_refl 1);
by (rtac prem 1);
by (rtac (mono RS gfp_Tarski RS equalityD1 RS subset_trans) 1);
by (rtac (mono RS monoD) 1);
by (stac (mono RS coinduct3_mono_lemma RS lfp_Tarski) 1);
by (rtac Un_upper2 1);
qed "coinduct3_lemma";
val ainA::prems = goal Gfp.thy
"[| a:A; A <= f(lfp(%x. f(x) Un A Un gfp(f))); mono(f) |] ==> a : gfp(f)";
by (rtac coinduct 1);
by (rtac (prems MRS coinduct3_lemma) 2);
by (resolve_tac (prems RL [coinduct3_mono_lemma RS lfp_Tarski RS ssubst]) 1);
by (rtac (ainA RS UnI2 RS UnI1) 1);
qed "coinduct3";
(** Definition forms of gfp_Tarski, to control unfolding **)
val [rew,mono] = goal Gfp.thy "[| h==gfp(f); mono(f) |] ==> h = f(h)";
by (rewtac rew);
by (rtac (mono RS gfp_Tarski) 1);
qed "def_gfp_Tarski";
val rew::prems = goal Gfp.thy
"[| h==gfp(f); a:A; A <= f(A) |] ==> a: h";
by (rewtac rew);
by (REPEAT (ares_tac (prems @ [coinduct]) 1));
qed "def_coinduct";
val rew::prems = goal Gfp.thy
"[| h==gfp(f); a:A; A <= f(A) Un h; mono(f) |] ==> a: h";
by (rewtac rew);
by (REPEAT (ares_tac (map (rewrite_rule [rew]) prems @ [coinduct2]) 1));
qed "def_coinduct2";
val rew::prems = goal Gfp.thy
"[| h==gfp(f); a:A; A <= f(lfp(%x. f(x) Un A Un h)); mono(f) |] ==> a: h";
by (rewtac rew);
by (REPEAT (ares_tac (map (rewrite_rule [rew]) prems @ [coinduct3]) 1));
qed "def_coinduct3";
(*Monotonicity of gfp!*)
val prems = goal Gfp.thy
"[| mono(f); !!Z. f(Z)<=g(Z) |] ==> gfp(f) <= gfp(g)";
by (rtac gfp_upperbound 1);
by (rtac subset_trans 1);
by (rtac gfp_lemma2 1);
by (resolve_tac prems 1);
by (resolve_tac prems 1);
qed "gfp_mono";