(* Title: HOL/Set.thy
ID: $Id$
Author: Tobias Nipkow
Copyright 1993 University of Cambridge
*)
Set = Ord +
types
'a set
arities
set :: (term) term
instance
set :: (term) {ord, minus}
consts
"{}" :: 'a set ("{}")
insert :: ['a, 'a set] => 'a set
Collect :: ('a => bool) => 'a set (*comprehension*)
Compl :: ('a set) => 'a set (*complement*)
Int :: ['a set, 'a set] => 'a set (infixl 70)
Un :: ['a set, 'a set] => 'a set (infixl 65)
UNION, INTER :: ['a set, 'a => 'b set] => 'b set (*general*)
UNION1 :: ['a => 'b set] => 'b set (binder "UN " 10)
INTER1 :: ['a => 'b set] => 'b set (binder "INT " 10)
Union, Inter :: (('a set)set) => 'a set (*of a set*)
Pow :: 'a set => 'a set set (*powerset*)
range :: ('a => 'b) => 'b set (*of function*)
Ball, Bex :: ['a set, 'a => bool] => bool (*bounded quantifiers*)
inj, surj :: ('a => 'b) => bool (*inj/surjective*)
inj_onto :: ['a => 'b, 'a set] => bool
"``" :: ['a => 'b, 'a set] => ('b set) (infixl 90)
":" :: ['a, 'a set] => bool (infixl 50) (*membership*)
syntax
"~:" :: ['a, 'a set] => bool (infixl 50)
"@Finset" :: args => 'a set ("{(_)}")
"@Coll" :: [pttrn, bool] => 'a set ("(1{_./ _})")
"@SetCompr" :: ['a, idts, bool] => 'a set ("(1{_ |/_./ _})")
(* Big Intersection / Union *)
"@INTER" :: [pttrn, 'a set, 'b set] => 'b set ("(3INT _:_./ _)" 10)
"@UNION" :: [pttrn, 'a set, 'b set] => 'b set ("(3UN _:_./ _)" 10)
(* Bounded Quantifiers *)
"@Ball" :: [pttrn, 'a set, bool] => bool ("(3! _:_./ _)" 10)
"@Bex" :: [pttrn, 'a set, bool] => bool ("(3? _:_./ _)" 10)
"*Ball" :: [pttrn, 'a set, bool] => bool ("(3ALL _:_./ _)" 10)
"*Bex" :: [pttrn, 'a set, bool] => bool ("(3EX _:_./ _)" 10)
translations
"x ~: y" == "~ (x : y)"
"{x, xs}" == "insert x {xs}"
"{x}" == "insert x {}"
"{x. P}" == "Collect (%x. P)"
"INT x:A. B" == "INTER A (%x. B)"
"UN x:A. B" == "UNION A (%x. B)"
"! x:A. P" == "Ball A (%x. P)"
"? x:A. P" == "Bex A (%x. P)"
"ALL x:A. P" => "Ball A (%x. P)"
"EX x:A. P" => "Bex A (%x. P)"
rules
(* Isomorphisms between Predicates and Sets *)
mem_Collect_eq "(a : {x.P(x)}) = P(a)"
Collect_mem_eq "{x.x:A} = A"
defs
Ball_def "Ball A P == ! x. x:A --> P(x)"
Bex_def "Bex A P == ? x. x:A & P(x)"
subset_def "A <= B == ! x:A. x:B"
Compl_def "Compl(A) == {x. ~x:A}"
Un_def "A Un B == {x.x:A | x:B}"
Int_def "A Int B == {x.x:A & x:B}"
set_diff_def "A - B == {x. x:A & ~x:B}"
INTER_def "INTER A B == {y. ! x:A. y: B(x)}"
UNION_def "UNION A B == {y. ? x:A. y: B(x)}"
INTER1_def "INTER1(B) == INTER {x.True} B"
UNION1_def "UNION1(B) == UNION {x.True} B"
Inter_def "Inter(S) == (INT x:S. x)"
Union_def "Union(S) == (UN x:S. x)"
Pow_def "Pow(A) == {B. B <= A}"
empty_def "{} == {x. False}"
insert_def "insert a B == {x.x=a} Un B"
range_def "range(f) == {y. ? x. y=f(x)}"
image_def "f``A == {y. ? x:A. y=f(x)}"
inj_def "inj(f) == ! x y. f(x)=f(y) --> x=y"
inj_onto_def "inj_onto f A == ! x:A. ! y:A. f(x)=f(y) --> x=y"
surj_def "surj(f) == ! y. ? x. y=f(x)"
(* start 8bit 1 *)
(* end 8bit 1 *)
end
ML
local
(* Translates between { e | x1..xn. P} and {u. ? x1..xn. u=e & P} *)
(* {y. ? x1..xn. y = e & P} is only translated if [0..n] subset bvs(e) *)
val ex_tr = snd(mk_binder_tr("? ","Ex"));
fun nvars(Const("_idts",_) $ _ $ idts) = nvars(idts)+1
| nvars(_) = 1;
fun setcompr_tr[e,idts,b] =
let val eq = Syntax.const("op =") $ Bound(nvars(idts)) $ e
val P = Syntax.const("op &") $ eq $ b
val exP = ex_tr [idts,P]
in Syntax.const("Collect") $ Abs("",dummyT,exP) end;
val ex_tr' = snd(mk_binder_tr' ("Ex","DUMMY"));
fun setcompr_tr'[Abs(_,_,P)] =
let fun ok(Const("Ex",_)$Abs(_,_,P),n) = ok(P,n+1)
| ok(Const("op &",_) $ (Const("op =",_) $ Bound(m) $ e) $ _, n) =
if n>0 andalso m=n andalso
((0 upto (n-1)) subset add_loose_bnos(e,0,[]))
then () else raise Match
fun tr'(_ $ abs) =
let val _ $ idts $ (_ $ (_ $ _ $ e) $ Q) = ex_tr'[abs]
in Syntax.const("@SetCompr") $ e $ idts $ Q end
in ok(P,0); tr'(P) end;
in
val parse_translation = [("@SetCompr", setcompr_tr)];
val print_translation = [("Collect", setcompr_tr')];
val print_ast_translation =
map HOL.alt_ast_tr' [("@Ball", "*Ball"), ("@Bex", "*Bex")];
end;