(* Title: HOLCF/Lift.ML
ID: $Id$
Author: Olaf Mueller
Copyright 1997 Technische Universitaet Muenchen
Theorems for Lift.thy
*)
(* ---------------------------------------------------------- *)
section"Continuity Proofs for flift1, flift2, if";
(* ---------------------------------------------------------- *)
(* need the instance into flat *)
(* flift1 is continuous in its argument itself*)
Goal "cont (lift_case UU f)";
by (rtac flatdom_strict2cont 1);
by (Simp_tac 1);
qed"cont_flift1_arg";
(* flift1 is continuous in a variable that occurs only
in the Def branch *)
Goal "!!f. [| !! a. cont (%y. (f y) a) |] ==> \
\ cont (%y. lift_case UU (f y))";
by (rtac cont2cont_CF1L_rev 1);
by (strip_tac 1);
by (res_inst_tac [("x","y")] Lift_cases 1);
by (Asm_simp_tac 1);
by (fast_tac (HOL_cs addss simpset()) 1);
qed"cont_flift1_not_arg";
(* flift1 is continuous in a variable that occurs either
in the Def branch or in the argument *)
Goal "!!f. [| !! a. cont (%y. (f y) a); cont g|] ==> \
\ cont (%y. lift_case UU (f y) (g y))";
by (res_inst_tac [("tt","g")] cont2cont_app 1);
by (rtac cont_flift1_not_arg 1);
by Auto_tac;
by (rtac cont_flift1_arg 1);
qed"cont_flift1_arg_and_not_arg";
(* flift2 is continuous in its argument itself *)
Goal "cont (lift_case UU (%y. Def (f y)))";
by (rtac flatdom_strict2cont 1);
by (Simp_tac 1);
qed"cont_flift2_arg";
(* ---------------------------------------------------------- *)
(* Extension of cont_tac and installation of simplifier *)
(* ---------------------------------------------------------- *)
bind_thm("cont2cont_CF1L_rev2",allI RS cont2cont_CF1L_rev);
val cont_lemmas_ext = [cont_flift1_arg,cont_flift2_arg,
cont_flift1_arg_and_not_arg,cont2cont_CF1L_rev2,
cont_Rep_CFun_app,cont_Rep_CFun_app_app,cont_if];
val cont_lemmas2 = cont_lemmas1 @ cont_lemmas_ext;
Addsimps cont_lemmas_ext;
fun cont_tac i = resolve_tac cont_lemmas2 i;
fun cont_tacR i = REPEAT (cont_tac i);
fun cont_tacRs i = simp_tac (simpset() addsimps [flift1_def,flift2_def]) i THEN
REPEAT (cont_tac i);
simpset_ref() := simpset() addSolver
(mk_solver "cont_tac" (K (DEPTH_SOLVE_1 o cont_tac)));
(* ---------------------------------------------------------- *)
section"flift1, flift2";
(* ---------------------------------------------------------- *)
Goal "flift1 f`(Def x) = (f x)";
by (simp_tac (simpset() addsimps [flift1_def]) 1);
qed"flift1_Def";
Goal "flift2 f`(Def x) = Def (f x)";
by (simp_tac (simpset() addsimps [flift2_def]) 1);
qed"flift2_Def";
Goal "flift1 f`UU = UU";
by (simp_tac (simpset() addsimps [flift1_def]) 1);
qed"flift1_UU";
Goal "flift2 f`UU = UU";
by (simp_tac (simpset() addsimps [flift2_def]) 1);
qed"flift2_UU";
Addsimps [flift1_Def,flift2_Def,flift1_UU,flift2_UU];
Goal "x~=UU ==> (flift2 f)`x~=UU";
by (def_tac 1);
qed"flift2_nUU";
Addsimps [flift2_nUU];