(* Title: HOL/Analysis/L2_Norm.thy
Author: Brian Huffman, Portland State University
*)
section \<open>L2 Norm\<close>
theory L2_Norm
imports Complex_Main
begin
definition %important "L2_set f A = sqrt (\<Sum>i\<in>A. (f i)\<^sup>2)"
lemma L2_set_cong:
"\<lbrakk>A = B; \<And>x. x \<in> B \<Longrightarrow> f x = g x\<rbrakk> \<Longrightarrow> L2_set f A = L2_set g B"
unfolding L2_set_def by simp
lemma L2_set_cong_strong:
"\<lbrakk>A = B; \<And>x. x \<in> B =simp=> f x = g x\<rbrakk> \<Longrightarrow> L2_set f A = L2_set g B"
unfolding L2_set_def simp_implies_def by simp
lemma L2_set_infinite [simp]: "\<not> finite A \<Longrightarrow> L2_set f A = 0"
unfolding L2_set_def by simp
lemma L2_set_empty [simp]: "L2_set f {} = 0"
unfolding L2_set_def by simp
lemma L2_set_insert [simp]:
"\<lbrakk>finite F; a \<notin> F\<rbrakk> \<Longrightarrow>
L2_set f (insert a F) = sqrt ((f a)\<^sup>2 + (L2_set f F)\<^sup>2)"
unfolding L2_set_def by (simp add: sum_nonneg)
lemma L2_set_nonneg [simp]: "0 \<le> L2_set f A"
unfolding L2_set_def by (simp add: sum_nonneg)
lemma L2_set_0': "\<forall>a\<in>A. f a = 0 \<Longrightarrow> L2_set f A = 0"
unfolding L2_set_def by simp
lemma L2_set_constant: "L2_set (\<lambda>x. y) A = sqrt (of_nat (card A)) * \<bar>y\<bar>"
unfolding L2_set_def by (simp add: real_sqrt_mult)
lemma L2_set_mono:
assumes "\<And>i. i \<in> K \<Longrightarrow> f i \<le> g i"
assumes "\<And>i. i \<in> K \<Longrightarrow> 0 \<le> f i"
shows "L2_set f K \<le> L2_set g K"
unfolding L2_set_def
by (simp add: sum_nonneg sum_mono power_mono assms)
lemma L2_set_strict_mono:
assumes "finite K" and "K \<noteq> {}"
assumes "\<And>i. i \<in> K \<Longrightarrow> f i < g i"
assumes "\<And>i. i \<in> K \<Longrightarrow> 0 \<le> f i"
shows "L2_set f K < L2_set g K"
unfolding L2_set_def
by (simp add: sum_strict_mono power_strict_mono assms)
lemma L2_set_right_distrib:
"0 \<le> r \<Longrightarrow> r * L2_set f A = L2_set (\<lambda>x. r * f x) A"
unfolding L2_set_def
apply (simp add: power_mult_distrib)
apply (simp add: sum_distrib_left [symmetric])
apply (simp add: real_sqrt_mult sum_nonneg)
done
lemma L2_set_left_distrib:
"0 \<le> r \<Longrightarrow> L2_set f A * r = L2_set (\<lambda>x. f x * r) A"
unfolding L2_set_def
apply (simp add: power_mult_distrib)
apply (simp add: sum_distrib_right [symmetric])
apply (simp add: real_sqrt_mult sum_nonneg)
done
lemma L2_set_eq_0_iff: "finite A \<Longrightarrow> L2_set f A = 0 \<longleftrightarrow> (\<forall>x\<in>A. f x = 0)"
unfolding L2_set_def
by (simp add: sum_nonneg sum_nonneg_eq_0_iff)
proposition L2_set_triangle_ineq:
"L2_set (\<lambda>i. f i + g i) A \<le> L2_set f A + L2_set g A"
proof (cases "finite A")
case False
thus ?thesis by simp
next
case True
thus ?thesis
proof (induct set: finite)
case empty
show ?case by simp
next
case (insert x F)
hence "sqrt ((f x + g x)\<^sup>2 + (L2_set (\<lambda>i. f i + g i) F)\<^sup>2) \<le>
sqrt ((f x + g x)\<^sup>2 + (L2_set f F + L2_set g F)\<^sup>2)"
by (intro real_sqrt_le_mono add_left_mono power_mono insert
L2_set_nonneg add_increasing zero_le_power2)
also have
"\<dots> \<le> sqrt ((f x)\<^sup>2 + (L2_set f F)\<^sup>2) + sqrt ((g x)\<^sup>2 + (L2_set g F)\<^sup>2)"
by (rule real_sqrt_sum_squares_triangle_ineq)
finally show ?case
using insert by simp
qed
qed
lemma L2_set_le_sum [rule_format]:
"(\<forall>i\<in>A. 0 \<le> f i) \<longrightarrow> L2_set f A \<le> sum f A"
apply (cases "finite A")
apply (induct set: finite)
apply simp
apply clarsimp
apply (erule order_trans [OF sqrt_sum_squares_le_sum])
apply simp
apply simp
apply simp
done
lemma L2_set_le_sum_abs: "L2_set f A \<le> (\<Sum>i\<in>A. \<bar>f i\<bar>)"
apply (cases "finite A")
apply (induct set: finite)
apply simp
apply simp
apply (rule order_trans [OF sqrt_sum_squares_le_sum_abs])
apply simp
apply simp
done
lemma L2_set_mult_ineq: "(\<Sum>i\<in>A. \<bar>f i\<bar> * \<bar>g i\<bar>) \<le> L2_set f A * L2_set g A"
apply (cases "finite A")
apply (induct set: finite)
apply simp
apply (rule power2_le_imp_le, simp)
apply (rule order_trans)
apply (rule power_mono)
apply (erule add_left_mono)
apply (simp add: sum_nonneg)
apply (simp add: power2_sum)
apply (simp add: power_mult_distrib)
apply (simp add: distrib_left distrib_right)
apply (rule ord_le_eq_trans)
apply (rule L2_set_mult_ineq_lemma)
apply simp_all
done
lemma member_le_L2_set: "\<lbrakk>finite A; i \<in> A\<rbrakk> \<Longrightarrow> f i \<le> L2_set f A"
unfolding L2_set_def
by (auto intro!: member_le_sum real_le_rsqrt)
end