src/FOL/fologic.ML
author wenzelm
Thu, 19 Oct 2000 21:22:05 +0200
changeset 10276 75e2c6cb4153
parent 9850 bee6eb4b6a42
child 10384 a499b9ce2ffe
permissions -rw-r--r--
added theory for HOL type definitions;

(*  Title:      FOL/fologic.ML
    ID:         $Id$
    Author:     Lawrence C Paulson

Abstract syntax operations for FOL.
*)

signature FOLOGIC =
sig
  val oT		: typ
  val mk_Trueprop	: term -> term
  val atomic_Trueprop	: string -> term
  val dest_Trueprop	: term -> term
  val not		: term
  val conj		: term
  val disj		: term
  val imp		: term
  val iff		: term
  val mk_conj		: term * term -> term
  val mk_disj		: term * term -> term
  val mk_imp		: term * term -> term
  val dest_imp	       	: term -> term*term
  val mk_iff		: term * term -> term
  val dest_iff	       	: term -> term*term
  val all_const		: typ -> term
  val mk_all		: term * term -> term
  val exists_const	: typ -> term
  val mk_exists		: term * term -> term
  val eq_const		: typ -> term
  val mk_eq		: term * term -> term
  val dest_eq 		: term -> term*term
  val mk_binop: string -> term * term -> term
  val mk_binrel: string -> term * term -> term
  val dest_bin: string -> typ -> term -> term * term
end;


structure FOLogic: FOLOGIC =
struct

val oT = Type("o",[]);

val Trueprop = Const("Trueprop", oT-->propT);

fun mk_Trueprop P = Trueprop $ P;

fun atomic_Trueprop x = mk_Trueprop (Free (x, oT));

fun dest_Trueprop (Const ("Trueprop", _) $ P) = P
  | dest_Trueprop t = raise TERM ("dest_Trueprop", [t]);

(** Logical constants **)

val not = Const ("Not", oT --> oT);
val conj = Const("op &", [oT,oT]--->oT);
val disj = Const("op |", [oT,oT]--->oT);
val imp = Const("op -->", [oT,oT]--->oT)
val iff = Const("op <->", [oT,oT]--->oT);

fun mk_conj (t1, t2) = conj $ t1 $ t2
and mk_disj (t1, t2) = disj $ t1 $ t2
and mk_imp (t1, t2) = imp $ t1 $ t2
and mk_iff (t1, t2) = iff $ t1 $ t2;

fun dest_imp (Const("op -->",_) $ A $ B) = (A, B)
  | dest_imp  t = raise TERM ("dest_imp", [t]);

fun dest_iff (Const("op <->",_) $ A $ B) = (A, B)
  | dest_iff  t = raise TERM ("dest_iff", [t]);

fun eq_const T = Const ("op =", [T, T] ---> oT);
fun mk_eq (t, u) = eq_const (fastype_of t) $ t $ u;

fun dest_eq (Const ("op =", _) $ lhs $ rhs) = (lhs, rhs)
  | dest_eq t = raise TERM ("dest_eq", [t])

fun all_const T = Const ("All", [T --> oT] ---> oT);
fun mk_all (Free(x,T),P) = all_const T $ (absfree (x,T,P));

fun exists_const T = Const ("Ex", [T --> oT] ---> oT);
fun mk_exists (Free(x,T),P) = exists_const T $ (absfree (x,T,P));

(* binary oprations and relations *)

fun mk_binop c (t, u) =
  let val T = fastype_of t in
    Const (c, [T, T] ---> T) $ t $ u
  end;

fun mk_binrel c (t, u) =
  let val T = fastype_of t in
    Const (c, [T, T] ---> oT) $ t $ u
  end;

fun dest_bin c T (tm as Const (c', Type ("fun", [T', _])) $ t $ u) =
      if c = c' andalso T = T' then (t, u)
      else raise TERM ("dest_bin " ^ c, [tm])
  | dest_bin c _ tm = raise TERM ("dest_bin " ^ c, [tm]);


end;