(* Title: HOL/ex/Records.thy
Author: Wolfgang Naraschewski, Norbert Schirmer and Markus Wenzel,
TU Muenchen
*)
header {* Using extensible records in HOL -- points and coloured points *}
theory Records
imports Main Record
begin
subsection {* Points *}
record point =
xpos :: nat
ypos :: nat
text {*
Apart many other things, above record declaration produces the
following theorems:
*}
thm "point.simps"
thm "point.iffs"
thm "point.defs"
text {*
The set of theorems @{thm [source] point.simps} is added
automatically to the standard simpset, @{thm [source] point.iffs} is
added to the Classical Reasoner and Simplifier context.
\medskip Record declarations define new types and type abbreviations:
@{text [display]
" point = \<lparr>xpos :: nat, ypos :: nat\<rparr> = () point_ext_type
'a point_scheme = \<lparr>xpos :: nat, ypos :: nat, ... :: 'a\<rparr> = 'a point_ext_type"}
*}
consts foo2 :: "(| xpos :: nat, ypos :: nat |)"
consts foo4 :: "'a => (| xpos :: nat, ypos :: nat, ... :: 'a |)"
subsubsection {* Introducing concrete records and record schemes *}
definition
foo1 :: point
where
foo1_def: "foo1 = (| xpos = 1, ypos = 0 |)"
definition
foo3 :: "'a => 'a point_scheme"
where
foo3_def: "foo3 ext = (| xpos = 1, ypos = 0, ... = ext |)"
subsubsection {* Record selection and record update *}
definition
getX :: "'a point_scheme => nat" where
"getX r = xpos r"
definition
setX :: "'a point_scheme => nat => 'a point_scheme" where
"setX r n = r (| xpos := n |)"
subsubsection {* Some lemmas about records *}
text {* Basic simplifications. *}
lemma "point.make n p = (| xpos = n, ypos = p |)"
by (simp only: point.make_def)
lemma "xpos (| xpos = m, ypos = n, ... = p |) = m"
by simp
lemma "(| xpos = m, ypos = n, ... = p |) (| xpos:= 0 |) = (| xpos = 0, ypos = n, ... = p |)"
by simp
text {* \medskip Equality of records. *}
lemma "n = n' ==> p = p' ==> (| xpos = n, ypos = p |) = (| xpos = n', ypos = p' |)"
-- "introduction of concrete record equality"
by simp
lemma "(| xpos = n, ypos = p |) = (| xpos = n', ypos = p' |) ==> n = n'"
-- "elimination of concrete record equality"
by simp
lemma "r (| xpos := n |) (| ypos := m |) = r (| ypos := m |) (| xpos := n |)"
-- "introduction of abstract record equality"
by simp
lemma "r (| xpos := n |) = r (| xpos := n' |) ==> n = n'"
-- "elimination of abstract record equality (manual proof)"
proof -
assume "r (| xpos := n |) = r (| xpos := n' |)" (is "?lhs = ?rhs")
hence "xpos ?lhs = xpos ?rhs" by simp
thus ?thesis by simp
qed
text {* \medskip Surjective pairing *}
lemma "r = (| xpos = xpos r, ypos = ypos r |)"
by simp
lemma "r = (| xpos = xpos r, ypos = ypos r, ... = point.more r |)"
by simp
text {*
\medskip Representation of records by cases or (degenerate)
induction.
*}
lemma "r(| xpos := n |) (| ypos := m |) = r (| ypos := m |) (| xpos := n |)"
proof (cases r)
fix xpos ypos more
assume "r = (| xpos = xpos, ypos = ypos, ... = more |)"
thus ?thesis by simp
qed
lemma "r (| xpos := n |) (| ypos := m |) = r (| ypos := m |) (| xpos := n |)"
proof (induct r)
fix xpos ypos more
show "(| xpos = xpos, ypos = ypos, ... = more |) (| xpos := n, ypos := m |) =
(| xpos = xpos, ypos = ypos, ... = more |) (| ypos := m, xpos := n |)"
by simp
qed
lemma "r (| xpos := n |) (| xpos := m |) = r (| xpos := m |)"
proof (cases r)
fix xpos ypos more
assume "r = \<lparr>xpos = xpos, ypos = ypos, \<dots> = more\<rparr>"
thus ?thesis by simp
qed
lemma "r (| xpos := n |) (| xpos := m |) = r (| xpos := m |)"
proof (cases r)
case fields
thus ?thesis by simp
qed
lemma "r (| xpos := n |) (| xpos := m |) = r (| xpos := m |)"
by (cases r) simp
text {*
\medskip Concrete records are type instances of record schemes.
*}
definition
foo5 :: nat where
"foo5 = getX (| xpos = 1, ypos = 0 |)"
text {* \medskip Manipulating the ``@{text "..."}'' (more) part. *}
definition
incX :: "'a point_scheme => 'a point_scheme" where
"incX r = (| xpos = xpos r + 1, ypos = ypos r, ... = point.more r |)"
lemma "incX r = setX r (Suc (getX r))"
by (simp add: getX_def setX_def incX_def)
text {* An alternative definition. *}
definition
incX' :: "'a point_scheme => 'a point_scheme" where
"incX' r = r (| xpos := xpos r + 1 |)"
subsection {* Coloured points: record extension *}
datatype colour = Red | Green | Blue
record cpoint = point +
colour :: colour
text {*
The record declaration defines a new type constructure and abbreviations:
@{text [display]
" cpoint = (| xpos :: nat, ypos :: nat, colour :: colour |) =
() cpoint_ext_type point_ext_type
'a cpoint_scheme = (| xpos :: nat, ypos :: nat, colour :: colour, ... :: 'a |) =
'a cpoint_ext_type point_ext_type"}
*}
consts foo6 :: cpoint
consts foo7 :: "(| xpos :: nat, ypos :: nat, colour :: colour |)"
consts foo8 :: "'a cpoint_scheme"
consts foo9 :: "(| xpos :: nat, ypos :: nat, colour :: colour, ... :: 'a |)"
text {*
Functions on @{text point} schemes work for @{text cpoints} as well.
*}
definition
foo10 :: nat where
"foo10 = getX (| xpos = 2, ypos = 0, colour = Blue |)"
subsubsection {* Non-coercive structural subtyping *}
text {*
Term @{term foo11} has type @{typ cpoint}, not type @{typ point} ---
Great!
*}
definition
foo11 :: cpoint where
"foo11 = setX (| xpos = 2, ypos = 0, colour = Blue |) 0"
subsection {* Other features *}
text {* Field names contribute to record identity. *}
record point' =
xpos' :: nat
ypos' :: nat
text {*
\noindent May not apply @{term getX} to @{term [source] "(| xpos' =
2, ypos' = 0 |)"} -- type error.
*}
text {* \medskip Polymorphic records. *}
record 'a point'' = point +
content :: 'a
types cpoint'' = "colour point''"
text {* Updating a record field with an identical value is simplified.*}
lemma "r (| xpos := xpos r |) = r"
by simp
text {* Only the most recent update to a component survives simplification. *}
lemma "r (| xpos := x, ypos := y, xpos := x' |) = r (| ypos := y, xpos := x' |)"
by simp
text {* In some cases its convenient to automatically split
(quantified) records. For this purpose there is the simproc @{ML [source]
"Record.split_simproc"} and the tactic @{ML [source]
"Record.split_simp_tac"}. The simplification procedure
only splits the records, whereas the tactic also simplifies the
resulting goal with the standard record simplification rules. A
(generalized) predicate on the record is passed as parameter that
decides whether or how `deep' to split the record. It can peek on the
subterm starting at the quantified occurrence of the record (including
the quantifier). The value @{ML "0"} indicates no split, a value
greater @{ML "0"} splits up to the given bound of record extension and
finally the value @{ML "~1"} completely splits the record.
@{ML [source] "Record.split_simp_tac"} additionally takes a list of
equations for simplification and can also split fixed record variables.
*}
lemma "(\<forall>r. P (xpos r)) \<longrightarrow> (\<forall>x. P x)"
apply (tactic {* simp_tac
(HOL_basic_ss addsimprocs [Record.split_simproc (K ~1)]) 1*})
apply simp
done
lemma "(\<forall>r. P (xpos r)) \<longrightarrow> (\<forall>x. P x)"
apply (tactic {* Record.split_simp_tac [] (K ~1) 1*})
apply simp
done
lemma "(\<exists>r. P (xpos r)) \<longrightarrow> (\<exists>x. P x)"
apply (tactic {* simp_tac
(HOL_basic_ss addsimprocs [Record.split_simproc (K ~1)]) 1*})
apply simp
done
lemma "(\<exists>r. P (xpos r)) \<longrightarrow> (\<exists>x. P x)"
apply (tactic {* Record.split_simp_tac [] (K ~1) 1*})
apply simp
done
lemma "\<And>r. P (xpos r) \<Longrightarrow> (\<exists>x. P x)"
apply (tactic {* simp_tac
(HOL_basic_ss addsimprocs [Record.split_simproc (K ~1)]) 1*})
apply auto
done
lemma "\<And>r. P (xpos r) \<Longrightarrow> (\<exists>x. P x)"
apply (tactic {* Record.split_simp_tac [] (K ~1) 1*})
apply auto
done
lemma "P (xpos r) \<Longrightarrow> (\<exists>x. P x)"
apply (tactic {* Record.split_simp_tac [] (K ~1) 1*})
apply auto
done
lemma fixes r shows "P (xpos r) \<Longrightarrow> (\<exists>x. P x)"
apply (tactic {* Record.split_simp_tac [] (K ~1) 1*})
apply auto
done
lemma True
proof -
{
fix P r
assume pre: "P (xpos r)"
have "\<exists>x. P x"
using pre
apply -
apply (tactic {* Record.split_simp_tac [] (K ~1) 1*})
apply auto
done
}
show ?thesis ..
qed
text {* The effect of simproc @{ML [source]
"Record.ex_sel_eq_simproc"} is illustrated by the
following lemma.
*}
lemma "\<exists>r. xpos r = x"
apply (tactic {*simp_tac
(HOL_basic_ss addsimprocs [Record.ex_sel_eq_simproc]) 1*})
done
subsection {* A more complex record expression *}
record ('a, 'b, 'c) bar = bar1 :: 'a
bar2 :: 'b
bar3 :: 'c
bar21 :: "'b \<times> 'a"
bar32 :: "'c \<times> 'b"
bar31 :: "'c \<times> 'a"
subsection {* Some code generation *}
export_code foo1 foo3 foo5 foo10 checking SML
end