signature INDUCTION =
sig
val induction_tac: Proof.context -> bool -> (binding option * (term * bool)) option list list ->
(string * typ) list list -> term option list -> thm list option ->
thm list -> int -> cases_tactic
val setup: theory -> theory
end
structure Induction: INDUCTION =
struct
val ind_hypsN = "IH";
fun preds_of t =
(case strip_comb t of
(p as Var _, _) => [p]
| (p as Free _, _) => [p]
| (_, ts) => flat(map preds_of ts))
fun name_hyps thy (arg as ((cases,consumes),th)) =
if not(forall (null o #2 o #1) cases) then arg
else
let
val (prems, concl) = Logic.strip_horn (prop_of th);
val prems' = drop consumes prems;
val ps = preds_of concl;
fun hname_of t =
if exists_subterm (member (op =) ps) t
then ind_hypsN else Rule_Cases.case_hypsN
val hnamess = map (map hname_of o Logic.strip_assums_hyp) prems'
val n = Int.min (length hnamess, length cases)
val cases' = map (fn (((cn,_),concls),hns) => ((cn,hns),concls))
(take n cases ~~ take n hnamess)
in ((cases',consumes),th) end
val induction_tac = Induct.gen_induct_tac name_hyps
val setup = Induct.gen_induct_setup @{binding induction} induction_tac
end