reduced default thread stack, to increase the success rate especially on Windows (NB: the actor worker farm tends to produce 100-200 threads for big sessions);
(* Title: HOL/Semiring_Normalization.thy Author: Amine Chaieb, TU Muenchen*)header {* Semiring normalization *}theory Semiring_Normalizationimports Numeral_Simprocs Nat_Transferuses "Tools/semiring_normalizer.ML"begintext {* Prelude *}class comm_semiring_1_cancel_crossproduct = comm_semiring_1_cancel + assumes crossproduct_eq: "w * y + x * z = w * z + x * y \<longleftrightarrow> w = x \<or> y = z"beginlemma crossproduct_noteq: "a \<noteq> b \<and> c \<noteq> d \<longleftrightarrow> a * c + b * d \<noteq> a * d + b * c" by (simp add: crossproduct_eq)lemma add_scale_eq_noteq: "r \<noteq> 0 \<Longrightarrow> a = b \<and> c \<noteq> d \<Longrightarrow> a + r * c \<noteq> b + r * d"proof (rule notI) assume nz: "r\<noteq> 0" and cnd: "a = b \<and> c\<noteq>d" and eq: "a + (r * c) = b + (r * d)" have "(0 * d) + (r * c) = (0 * c) + (r * d)" using add_imp_eq eq mult_zero_left by (simp add: cnd) then show False using crossproduct_eq [of 0 d] nz cnd by simpqedlemma add_0_iff: "b = b + a \<longleftrightarrow> a = 0" using add_imp_eq [of b a 0] by autoendsubclass (in idom) comm_semiring_1_cancel_crossproductproof fix w x y z show "w * y + x * z = w * z + x * y \<longleftrightarrow> w = x \<or> y = z" proof assume "w * y + x * z = w * z + x * y" then have "w * y + x * z - w * z - x * y = 0" by (simp add: algebra_simps) then have "w * (y - z) - x * (y - z) = 0" by (simp add: algebra_simps) then have "(y - z) * (w - x) = 0" by (simp add: algebra_simps) then have "y - z = 0 \<or> w - x = 0" by (rule divisors_zero) then show "w = x \<or> y = z" by auto qed (auto simp add: add_ac)qedinstance nat :: comm_semiring_1_cancel_crossproductproof fix w x y z :: nat have aux: "\<And>y z. y < z \<Longrightarrow> w * y + x * z = w * z + x * y \<Longrightarrow> w = x" proof - fix y z :: nat assume "y < z" then have "\<exists>k. z = y + k \<and> k \<noteq> 0" by (intro exI [of _ "z - y"]) auto then obtain k where "z = y + k" and "k \<noteq> 0" by blast assume "w * y + x * z = w * z + x * y" then have "(w * y + x * y) + x * k = (w * y + x * y) + w * k" by (simp add: `z = y + k` algebra_simps) then have "x * k = w * k" by simp then show "w = x" using `k \<noteq> 0` by simp qed show "w * y + x * z = w * z + x * y \<longleftrightarrow> w = x \<or> y = z" by (auto simp add: neq_iff dest!: aux)qedtext {* Semiring normalization proper *}setup Semiring_Normalizer.setupcontext comm_semiring_1beginlemma normalizing_semiring_ops: shows "TERM (x + y)" and "TERM (x * y)" and "TERM (x ^ n)" and "TERM 0" and "TERM 1" .lemma normalizing_semiring_rules: "(a * m) + (b * m) = (a + b) * m" "(a * m) + m = (a + 1) * m" "m + (a * m) = (a + 1) * m" "m + m = (1 + 1) * m" "0 + a = a" "a + 0 = a" "a * b = b * a" "(a + b) * c = (a * c) + (b * c)" "0 * a = 0" "a * 0 = 0" "1 * a = a" "a * 1 = a" "(lx * ly) * (rx * ry) = (lx * rx) * (ly * ry)" "(lx * ly) * (rx * ry) = lx * (ly * (rx * ry))" "(lx * ly) * (rx * ry) = rx * ((lx * ly) * ry)" "(lx * ly) * rx = (lx * rx) * ly" "(lx * ly) * rx = lx * (ly * rx)" "lx * (rx * ry) = (lx * rx) * ry" "lx * (rx * ry) = rx * (lx * ry)" "(a + b) + (c + d) = (a + c) + (b + d)" "(a + b) + c = a + (b + c)" "a + (c + d) = c + (a + d)" "(a + b) + c = (a + c) + b" "a + c = c + a" "a + (c + d) = (a + c) + d" "(x ^ p) * (x ^ q) = x ^ (p + q)" "x * (x ^ q) = x ^ (Suc q)" "(x ^ q) * x = x ^ (Suc q)" "x * x = x ^ 2" "(x * y) ^ q = (x ^ q) * (y ^ q)" "(x ^ p) ^ q = x ^ (p * q)" "x ^ 0 = 1" "x ^ 1 = x" "x * (y + z) = (x * y) + (x * z)" "x ^ (Suc q) = x * (x ^ q)" "x ^ (2*n) = (x ^ n) * (x ^ n)" "x ^ (Suc (2*n)) = x * ((x ^ n) * (x ^ n))" by (simp_all add: algebra_simps power_add power2_eq_square power_mult_distrib power_mult)lemmas normalizing_comm_semiring_1_axioms = comm_semiring_1_axioms [normalizer semiring ops: normalizing_semiring_ops semiring rules: normalizing_semiring_rules]declaration {* Semiring_Normalizer.semiring_funs @{thm normalizing_comm_semiring_1_axioms} *}endcontext comm_ring_1beginlemma normalizing_ring_ops: shows "TERM (x- y)" and "TERM (- x)" .lemma normalizing_ring_rules: "- x = (- 1) * x" "x - y = x + (- y)" by (simp_all add: diff_minus)lemmas normalizing_comm_ring_1_axioms = comm_ring_1_axioms [normalizer semiring ops: normalizing_semiring_ops semiring rules: normalizing_semiring_rules ring ops: normalizing_ring_ops ring rules: normalizing_ring_rules]declaration {* Semiring_Normalizer.semiring_funs @{thm normalizing_comm_ring_1_axioms} *}endcontext comm_semiring_1_cancel_crossproductbegindeclare normalizing_comm_semiring_1_axioms [normalizer del]lemmas normalizing_comm_semiring_1_cancel_crossproduct_axioms = comm_semiring_1_cancel_crossproduct_axioms [normalizer semiring ops: normalizing_semiring_ops semiring rules: normalizing_semiring_rules idom rules: crossproduct_noteq add_scale_eq_noteq]declaration {* Semiring_Normalizer.semiring_funs @{thm normalizing_comm_semiring_1_cancel_crossproduct_axioms} *}endcontext idombegindeclare normalizing_comm_ring_1_axioms [normalizer del]lemmas normalizing_idom_axioms = idom_axioms [normalizer semiring ops: normalizing_semiring_ops semiring rules: normalizing_semiring_rules ring ops: normalizing_ring_ops ring rules: normalizing_ring_rules idom rules: crossproduct_noteq add_scale_eq_noteq ideal rules: right_minus_eq add_0_iff]declaration {* Semiring_Normalizer.semiring_funs @{thm normalizing_idom_axioms} *}endcontext fieldbeginlemma normalizing_field_ops: shows "TERM (x / y)" and "TERM (inverse x)" .lemmas normalizing_field_rules = divide_inverse inverse_eq_dividelemmas normalizing_field_axioms = field_axioms [normalizer semiring ops: normalizing_semiring_ops semiring rules: normalizing_semiring_rules ring ops: normalizing_ring_ops ring rules: normalizing_ring_rules field ops: normalizing_field_ops field rules: normalizing_field_rules idom rules: crossproduct_noteq add_scale_eq_noteq ideal rules: right_minus_eq add_0_iff]declaration {* Semiring_Normalizer.field_funs @{thm normalizing_field_axioms} *}endhide_fact (open) normalizing_comm_semiring_1_axioms normalizing_comm_semiring_1_cancel_crossproduct_axioms normalizing_semiring_ops normalizing_semiring_ruleshide_fact (open) normalizing_comm_ring_1_axioms normalizing_idom_axioms normalizing_ring_ops normalizing_ring_ruleshide_fact (open) normalizing_field_axioms normalizing_field_ops normalizing_field_rulesend