renamed HOL + - * etc. to HOL.plus HOL.minus HOL.times etc.
(* Title: HOL/Library/ExecutableRat.thy
ID: $Id$
Author: Florian Haftmann, TU Muenchen
*)
header {* Executable implementation of rational numbers in HOL *}
theory ExecutableRat
imports "~~/src/HOL/Real/Rational" "~~/src/HOL/NumberTheory/IntPrimes"
begin
text {*
Actually nothing is proved about the implementation.
*}
datatype erat = Rat bool int int
instance erat :: zero ..
instance erat :: one ..
instance erat :: plus ..
instance erat :: minus ..
instance erat :: times ..
instance erat :: inverse ..
instance erat :: ord ..
consts
norm :: "erat \<Rightarrow> erat"
common :: "(int * int) * (int * int) \<Rightarrow> (int * int) * int"
of_quotient :: "int * int \<Rightarrow> erat"
of_rat :: "rat \<Rightarrow> erat"
to_rat :: "erat \<Rightarrow> rat"
defs
norm_def [simp]: "norm r == case r of (Rat a p q) \<Rightarrow>
if p = 0 then Rat True 0 1
else
let
absp = abs p
in let
m = zgcd (absp, q)
in Rat (a = (0 <= p)) (absp div m) (q div m)"
common_def [simp]: "common r == case r of ((p1, q1), (p2, q2)) \<Rightarrow>
let q' = q1 * q2 div int (gcd (nat q1, nat q2))
in ((p1 * (q' div q1), p2 * (q' div q2)), q')"
of_quotient_def [simp]: "of_quotient r == case r of (a, b) \<Rightarrow>
norm (Rat True a b)"
of_rat_def [simp]: "of_rat r == of_quotient (THE s. s : Rep_Rat r)"
to_rat_def [simp]: "to_rat r == case r of (Rat a p q) \<Rightarrow>
if a then Fract p q else Fract (uminus p) q"
consts
zero :: erat
one :: erat
add :: "erat \<Rightarrow> erat \<Rightarrow> erat"
neg :: "erat \<Rightarrow> erat"
mult :: "erat \<Rightarrow> erat \<Rightarrow> erat"
inv :: "erat \<Rightarrow> erat"
le :: "erat \<Rightarrow> erat \<Rightarrow> bool"
defs (overloaded)
zero_rat_def [simp]: "0 == Rat False 0 1"
one_rat_def [simp]: "1 == Rat False 1 1"
add_rat_def [simp]: "r + s == case r of Rat a1 p1 q1 \<Rightarrow> case s of Rat a2 p2 q2 \<Rightarrow>
let
((r1, r2), den) = common ((p1, q1), (p2, q2))
in let
num = (if a1 then r1 else -r1) + (if a2 then r2 else -r2)
in norm (Rat True num den)"
uminus_rat_def [simp]: "- r == case r of Rat a p q \<Rightarrow>
if p = 0 then Rat a p q
else Rat (\<not> a) p q"
times_rat_def [simp]: "r * s == case r of Rat a1 p1 q1 \<Rightarrow> case s of Rat a2 p2 q2 \<Rightarrow>
norm (Rat (a1 = a2) (p1 * p2) (q1 * q2))"
inverse_rat_def [simp]: "inverse r == case r of Rat a p q \<Rightarrow>
if p = 0 then arbitrary
else Rat a q p"
le_rat_def [simp]: "r <= s == case r of Rat a1 p1 q1 \<Rightarrow> case s of Rat a2 p2 q2 \<Rightarrow>
(\<not> a1 \<and> a2) \<or>
(\<not> (a1 \<and> \<not> a2) \<and>
(let
((r1, r2), dummy) = common ((p1, q1), (p2, q2))
in if a1 then r1 <= r2 else r2 <= r1))"
code_syntax_tyco rat
ml (target_atom "{*erat*}")
haskell (target_atom "{*erat*}")
code_syntax_const
Fract
ml ("{*of_quotient*}")
haskell ("{*of_quotient*}")
"0 :: rat"
ml ("{*0::erat*}")
haskell ("{*1::erat*}")
"1 :: rat"
ml ("{*1::erat*}")
haskell ("{*1::erat*}")
"op + :: rat \<Rightarrow> rat \<Rightarrow> rat"
ml ("{*op + :: erat \<Rightarrow> erat \<Rightarrow> erat*}")
haskell ("{*HOL.plus :: erat \<Rightarrow> erat \<Rightarrow> erat*}")
"uminus :: rat \<Rightarrow> rat"
ml ("{*uminus :: erat \<Rightarrow> erat*}")
haskell ("{*uminus :: erat \<Rightarrow> erat*}")
"op * :: rat \<Rightarrow> rat \<Rightarrow> rat"
ml ("{*op * :: erat \<Rightarrow> erat \<Rightarrow> erat*}")
haskell ("{*op * :: erat \<Rightarrow> erat \<Rightarrow> erat*}")
"inverse :: rat \<Rightarrow> rat"
ml ("{*inverse :: erat \<Rightarrow> erat*}")
haskell ("{*inverse :: erat \<Rightarrow> erat*}")
"divide :: rat \<Rightarrow> rat \<Rightarrow> rat"
ml ("{*op * :: erat \<Rightarrow> erat \<Rightarrow> erat*}/ _/ ({*inverse :: erat \<Rightarrow> erat*}/ _)")
haskell ("{*op * :: erat \<Rightarrow> erat \<Rightarrow> erat*}/ _/ ({*inverse :: erat \<Rightarrow> erat*}/ _)")
"op <= :: rat \<Rightarrow> rat \<Rightarrow> bool"
ml ("{*op <= :: erat \<Rightarrow> erat \<Rightarrow> bool*}")
haskell ("{*op <= :: erat \<Rightarrow> erat \<Rightarrow> bool*}")
end