(* Title: HOL/Lattices_Big.thy
Author: Tobias Nipkow, Lawrence C Paulson and Markus Wenzel
with contributions by Jeremy Avigad
*)
section \<open>Big infimum (minimum) and supremum (maximum) over finite (non-empty) sets\<close>
theory Lattices_Big
imports Groups_Big Option
begin
subsection \<open>Generic lattice operations over a set\<close>
subsubsection \<open>Without neutral element\<close>
locale semilattice_set = semilattice
begin
interpretation comp_fun_idem f
by standard (simp_all add: fun_eq_iff left_commute)
definition F :: "'a set \<Rightarrow> 'a"
where
eq_fold': "F A = the (Finite_Set.fold (\<lambda>x y. Some (case y of None \<Rightarrow> x | Some z \<Rightarrow> f x z)) None A)"
lemma eq_fold:
assumes "finite A"
shows "F (insert x A) = Finite_Set.fold f x A"
proof (rule sym)
let ?f = "\<lambda>x y. Some (case y of None \<Rightarrow> x | Some z \<Rightarrow> f x z)"
interpret comp_fun_idem "?f"
by standard (simp_all add: fun_eq_iff commute left_commute split: option.split)
from assms show "Finite_Set.fold f x A = F (insert x A)"
proof induct
case empty then show ?case by (simp add: eq_fold')
next
case (insert y B) then show ?case by (simp add: insert_commute [of x] eq_fold')
qed
qed
lemma singleton [simp]:
"F {x} = x"
by (simp add: eq_fold)
lemma insert_not_elem:
assumes "finite A" and "x \<notin> A" and "A \<noteq> {}"
shows "F (insert x A) = x \<^bold>* F A"
proof -
from \<open>A \<noteq> {}\<close> obtain b where "b \<in> A" by blast
then obtain B where *: "A = insert b B" "b \<notin> B" by (blast dest: mk_disjoint_insert)
with \<open>finite A\<close> and \<open>x \<notin> A\<close>
have "finite (insert x B)" and "b \<notin> insert x B" by auto
then have "F (insert b (insert x B)) = x \<^bold>* F (insert b B)"
by (simp add: eq_fold)
then show ?thesis by (simp add: * insert_commute)
qed
lemma in_idem:
assumes "finite A" and "x \<in> A"
shows "x \<^bold>* F A = F A"
proof -
from assms have "A \<noteq> {}" by auto
with \<open>finite A\<close> show ?thesis using \<open>x \<in> A\<close>
by (induct A rule: finite_ne_induct) (auto simp add: ac_simps insert_not_elem)
qed
lemma insert [simp]:
assumes "finite A" and "A \<noteq> {}"
shows "F (insert x A) = x \<^bold>* F A"
using assms by (cases "x \<in> A") (simp_all add: insert_absorb in_idem insert_not_elem)
lemma union:
assumes "finite A" "A \<noteq> {}" and "finite B" "B \<noteq> {}"
shows "F (A \<union> B) = F A \<^bold>* F B"
using assms by (induct A rule: finite_ne_induct) (simp_all add: ac_simps)
lemma remove:
assumes "finite A" and "x \<in> A"
shows "F A = (if A - {x} = {} then x else x \<^bold>* F (A - {x}))"
proof -
from assms obtain B where "A = insert x B" and "x \<notin> B" by (blast dest: mk_disjoint_insert)
with assms show ?thesis by simp
qed
lemma insert_remove:
assumes "finite A"
shows "F (insert x A) = (if A - {x} = {} then x else x \<^bold>* F (A - {x}))"
using assms by (cases "x \<in> A") (simp_all add: insert_absorb remove)
lemma subset:
assumes "finite A" "B \<noteq> {}" and "B \<subseteq> A"
shows "F B \<^bold>* F A = F A"
proof -
from assms have "A \<noteq> {}" and "finite B" by (auto dest: finite_subset)
with assms show ?thesis by (simp add: union [symmetric] Un_absorb1)
qed
lemma closed:
assumes "finite A" "A \<noteq> {}" and elem: "\<And>x y. x \<^bold>* y \<in> {x, y}"
shows "F A \<in> A"
using \<open>finite A\<close> \<open>A \<noteq> {}\<close> proof (induct rule: finite_ne_induct)
case singleton then show ?case by simp
next
case insert with elem show ?case by force
qed
lemma hom_commute:
assumes hom: "\<And>x y. h (x \<^bold>* y) = h x \<^bold>* h y"
and N: "finite N" "N \<noteq> {}"
shows "h (F N) = F (h ` N)"
using N proof (induct rule: finite_ne_induct)
case singleton thus ?case by simp
next
case (insert n N)
then have "h (F (insert n N)) = h (n \<^bold>* F N)" by simp
also have "\<dots> = h n \<^bold>* h (F N)" by (rule hom)
also have "h (F N) = F (h ` N)" by (rule insert)
also have "h n \<^bold>* \<dots> = F (insert (h n) (h ` N))"
using insert by simp
also have "insert (h n) (h ` N) = h ` insert n N" by simp
finally show ?case .
qed
lemma infinite: "\<not> finite A \<Longrightarrow> F A = the None"
unfolding eq_fold' by (cases "finite (UNIV::'a set)") (auto intro: finite_subset fold_infinite)
end
locale semilattice_order_set = binary?: semilattice_order + semilattice_set
begin
lemma bounded_iff:
assumes "finite A" and "A \<noteq> {}"
shows "x \<^bold>\<le> F A \<longleftrightarrow> (\<forall>a\<in>A. x \<^bold>\<le> a)"
using assms by (induct rule: finite_ne_induct) simp_all
lemma boundedI:
assumes "finite A"
assumes "A \<noteq> {}"
assumes "\<And>a. a \<in> A \<Longrightarrow> x \<^bold>\<le> a"
shows "x \<^bold>\<le> F A"
using assms by (simp add: bounded_iff)
lemma boundedE:
assumes "finite A" and "A \<noteq> {}" and "x \<^bold>\<le> F A"
obtains "\<And>a. a \<in> A \<Longrightarrow> x \<^bold>\<le> a"
using assms by (simp add: bounded_iff)
lemma coboundedI:
assumes "finite A"
and "a \<in> A"
shows "F A \<^bold>\<le> a"
proof -
from assms have "A \<noteq> {}" by auto
from \<open>finite A\<close> \<open>A \<noteq> {}\<close> \<open>a \<in> A\<close> show ?thesis
proof (induct rule: finite_ne_induct)
case singleton thus ?case by (simp add: refl)
next
case (insert x B)
from insert have "a = x \<or> a \<in> B" by simp
then show ?case using insert by (auto intro: coboundedI2)
qed
qed
lemma subset_imp:
assumes "A \<subseteq> B" and "A \<noteq> {}" and "finite B"
shows "F B \<^bold>\<le> F A"
proof (cases "A = B")
case True then show ?thesis by (simp add: refl)
next
case False
have B: "B = A \<union> (B - A)" using \<open>A \<subseteq> B\<close> by blast
then have "F B = F (A \<union> (B - A))" by simp
also have "\<dots> = F A \<^bold>* F (B - A)" using False assms by (subst union) (auto intro: finite_subset)
also have "\<dots> \<^bold>\<le> F A" by simp
finally show ?thesis .
qed
end
subsubsection \<open>With neutral element\<close>
locale semilattice_neutr_set = semilattice_neutr
begin
interpretation comp_fun_idem f
by standard (simp_all add: fun_eq_iff left_commute)
definition F :: "'a set \<Rightarrow> 'a"
where
eq_fold: "F A = Finite_Set.fold f \<^bold>1 A"
lemma infinite [simp]:
"\<not> finite A \<Longrightarrow> F A = \<^bold>1"
by (simp add: eq_fold)
lemma empty [simp]:
"F {} = \<^bold>1"
by (simp add: eq_fold)
lemma insert [simp]:
assumes "finite A"
shows "F (insert x A) = x \<^bold>* F A"
using assms by (simp add: eq_fold)
lemma in_idem:
assumes "finite A" and "x \<in> A"
shows "x \<^bold>* F A = F A"
proof -
from assms have "A \<noteq> {}" by auto
with \<open>finite A\<close> show ?thesis using \<open>x \<in> A\<close>
by (induct A rule: finite_ne_induct) (auto simp add: ac_simps)
qed
lemma union:
assumes "finite A" and "finite B"
shows "F (A \<union> B) = F A \<^bold>* F B"
using assms by (induct A) (simp_all add: ac_simps)
lemma remove:
assumes "finite A" and "x \<in> A"
shows "F A = x \<^bold>* F (A - {x})"
proof -
from assms obtain B where "A = insert x B" and "x \<notin> B" by (blast dest: mk_disjoint_insert)
with assms show ?thesis by simp
qed
lemma insert_remove:
assumes "finite A"
shows "F (insert x A) = x \<^bold>* F (A - {x})"
using assms by (cases "x \<in> A") (simp_all add: insert_absorb remove)
lemma subset:
assumes "finite A" and "B \<subseteq> A"
shows "F B \<^bold>* F A = F A"
proof -
from assms have "finite B" by (auto dest: finite_subset)
with assms show ?thesis by (simp add: union [symmetric] Un_absorb1)
qed
lemma closed:
assumes "finite A" "A \<noteq> {}" and elem: "\<And>x y. x \<^bold>* y \<in> {x, y}"
shows "F A \<in> A"
using \<open>finite A\<close> \<open>A \<noteq> {}\<close> proof (induct rule: finite_ne_induct)
case singleton then show ?case by simp
next
case insert with elem show ?case by force
qed
end
locale semilattice_order_neutr_set = binary?: semilattice_neutr_order + semilattice_neutr_set
begin
lemma bounded_iff:
assumes "finite A"
shows "x \<^bold>\<le> F A \<longleftrightarrow> (\<forall>a\<in>A. x \<^bold>\<le> a)"
using assms by (induct A) simp_all
lemma boundedI:
assumes "finite A"
assumes "\<And>a. a \<in> A \<Longrightarrow> x \<^bold>\<le> a"
shows "x \<^bold>\<le> F A"
using assms by (simp add: bounded_iff)
lemma boundedE:
assumes "finite A" and "x \<^bold>\<le> F A"
obtains "\<And>a. a \<in> A \<Longrightarrow> x \<^bold>\<le> a"
using assms by (simp add: bounded_iff)
lemma coboundedI:
assumes "finite A"
and "a \<in> A"
shows "F A \<^bold>\<le> a"
proof -
from assms have "A \<noteq> {}" by auto
from \<open>finite A\<close> \<open>A \<noteq> {}\<close> \<open>a \<in> A\<close> show ?thesis
proof (induct rule: finite_ne_induct)
case singleton thus ?case by (simp add: refl)
next
case (insert x B)
from insert have "a = x \<or> a \<in> B" by simp
then show ?case using insert by (auto intro: coboundedI2)
qed
qed
lemma subset_imp:
assumes "A \<subseteq> B" and "finite B"
shows "F B \<^bold>\<le> F A"
proof (cases "A = B")
case True then show ?thesis by (simp add: refl)
next
case False
have B: "B = A \<union> (B - A)" using \<open>A \<subseteq> B\<close> by blast
then have "F B = F (A \<union> (B - A))" by simp
also have "\<dots> = F A \<^bold>* F (B - A)" using False assms by (subst union) (auto intro: finite_subset)
also have "\<dots> \<^bold>\<le> F A" by simp
finally show ?thesis .
qed
end
subsection \<open>Lattice operations on finite sets\<close>
context semilattice_inf
begin
sublocale Inf_fin: semilattice_order_set inf less_eq less
defines
Inf_fin ("\<Sqinter>\<^sub>f\<^sub>i\<^sub>n _" [900] 900) = Inf_fin.F ..
end
context semilattice_sup
begin
sublocale Sup_fin: semilattice_order_set sup greater_eq greater
defines
Sup_fin ("\<Squnion>\<^sub>f\<^sub>i\<^sub>n _" [900] 900) = Sup_fin.F ..
end
subsection \<open>Infimum and Supremum over non-empty sets\<close>
context lattice
begin
lemma Inf_fin_le_Sup_fin [simp]:
assumes "finite A" and "A \<noteq> {}"
shows "\<Sqinter>\<^sub>f\<^sub>i\<^sub>nA \<le> \<Squnion>\<^sub>f\<^sub>i\<^sub>nA"
proof -
from \<open>A \<noteq> {}\<close> obtain a where "a \<in> A" by blast
with \<open>finite A\<close> have "\<Sqinter>\<^sub>f\<^sub>i\<^sub>nA \<le> a" by (rule Inf_fin.coboundedI)
moreover from \<open>finite A\<close> \<open>a \<in> A\<close> have "a \<le> \<Squnion>\<^sub>f\<^sub>i\<^sub>nA" by (rule Sup_fin.coboundedI)
ultimately show ?thesis by (rule order_trans)
qed
lemma sup_Inf_absorb [simp]:
"finite A \<Longrightarrow> a \<in> A \<Longrightarrow> \<Sqinter>\<^sub>f\<^sub>i\<^sub>nA \<squnion> a = a"
by (rule sup_absorb2) (rule Inf_fin.coboundedI)
lemma inf_Sup_absorb [simp]:
"finite A \<Longrightarrow> a \<in> A \<Longrightarrow> a \<sqinter> \<Squnion>\<^sub>f\<^sub>i\<^sub>nA = a"
by (rule inf_absorb1) (rule Sup_fin.coboundedI)
end
context distrib_lattice
begin
lemma sup_Inf1_distrib:
assumes "finite A"
and "A \<noteq> {}"
shows "sup x (\<Sqinter>\<^sub>f\<^sub>i\<^sub>nA) = \<Sqinter>\<^sub>f\<^sub>i\<^sub>n{sup x a|a. a \<in> A}"
using assms by (simp add: image_def Inf_fin.hom_commute [where h="sup x", OF sup_inf_distrib1])
(rule arg_cong [where f="Inf_fin"], blast)
lemma sup_Inf2_distrib:
assumes A: "finite A" "A \<noteq> {}" and B: "finite B" "B \<noteq> {}"
shows "sup (\<Sqinter>\<^sub>f\<^sub>i\<^sub>nA) (\<Sqinter>\<^sub>f\<^sub>i\<^sub>nB) = \<Sqinter>\<^sub>f\<^sub>i\<^sub>n{sup a b|a b. a \<in> A \<and> b \<in> B}"
using A proof (induct rule: finite_ne_induct)
case singleton then show ?case
by (simp add: sup_Inf1_distrib [OF B])
next
case (insert x A)
have finB: "finite {sup x b |b. b \<in> B}"
by (rule finite_surj [where f = "sup x", OF B(1)], auto)
have finAB: "finite {sup a b |a b. a \<in> A \<and> b \<in> B}"
proof -
have "{sup a b |a b. a \<in> A \<and> b \<in> B} = (\<Union>a\<in>A. \<Union>b\<in>B. {sup a b})"
by blast
thus ?thesis by(simp add: insert(1) B(1))
qed
have ne: "{sup a b |a b. a \<in> A \<and> b \<in> B} \<noteq> {}" using insert B by blast
have "sup (\<Sqinter>\<^sub>f\<^sub>i\<^sub>n(insert x A)) (\<Sqinter>\<^sub>f\<^sub>i\<^sub>nB) = sup (inf x (\<Sqinter>\<^sub>f\<^sub>i\<^sub>nA)) (\<Sqinter>\<^sub>f\<^sub>i\<^sub>nB)"
using insert by simp
also have "\<dots> = inf (sup x (\<Sqinter>\<^sub>f\<^sub>i\<^sub>nB)) (sup (\<Sqinter>\<^sub>f\<^sub>i\<^sub>nA) (\<Sqinter>\<^sub>f\<^sub>i\<^sub>nB))" by(rule sup_inf_distrib2)
also have "\<dots> = inf (\<Sqinter>\<^sub>f\<^sub>i\<^sub>n{sup x b|b. b \<in> B}) (\<Sqinter>\<^sub>f\<^sub>i\<^sub>n{sup a b|a b. a \<in> A \<and> b \<in> B})"
using insert by(simp add:sup_Inf1_distrib[OF B])
also have "\<dots> = \<Sqinter>\<^sub>f\<^sub>i\<^sub>n({sup x b |b. b \<in> B} \<union> {sup a b |a b. a \<in> A \<and> b \<in> B})"
(is "_ = \<Sqinter>\<^sub>f\<^sub>i\<^sub>n?M")
using B insert
by (simp add: Inf_fin.union [OF finB _ finAB ne])
also have "?M = {sup a b |a b. a \<in> insert x A \<and> b \<in> B}"
by blast
finally show ?case .
qed
lemma inf_Sup1_distrib:
assumes "finite A" and "A \<noteq> {}"
shows "inf x (\<Squnion>\<^sub>f\<^sub>i\<^sub>nA) = \<Squnion>\<^sub>f\<^sub>i\<^sub>n{inf x a|a. a \<in> A}"
using assms by (simp add: image_def Sup_fin.hom_commute [where h="inf x", OF inf_sup_distrib1])
(rule arg_cong [where f="Sup_fin"], blast)
lemma inf_Sup2_distrib:
assumes A: "finite A" "A \<noteq> {}" and B: "finite B" "B \<noteq> {}"
shows "inf (\<Squnion>\<^sub>f\<^sub>i\<^sub>nA) (\<Squnion>\<^sub>f\<^sub>i\<^sub>nB) = \<Squnion>\<^sub>f\<^sub>i\<^sub>n{inf a b|a b. a \<in> A \<and> b \<in> B}"
using A proof (induct rule: finite_ne_induct)
case singleton thus ?case
by(simp add: inf_Sup1_distrib [OF B])
next
case (insert x A)
have finB: "finite {inf x b |b. b \<in> B}"
by(rule finite_surj[where f = "%b. inf x b", OF B(1)], auto)
have finAB: "finite {inf a b |a b. a \<in> A \<and> b \<in> B}"
proof -
have "{inf a b |a b. a \<in> A \<and> b \<in> B} = (\<Union>a\<in>A. \<Union>b\<in>B. {inf a b})"
by blast
thus ?thesis by(simp add: insert(1) B(1))
qed
have ne: "{inf a b |a b. a \<in> A \<and> b \<in> B} \<noteq> {}" using insert B by blast
have "inf (\<Squnion>\<^sub>f\<^sub>i\<^sub>n(insert x A)) (\<Squnion>\<^sub>f\<^sub>i\<^sub>nB) = inf (sup x (\<Squnion>\<^sub>f\<^sub>i\<^sub>nA)) (\<Squnion>\<^sub>f\<^sub>i\<^sub>nB)"
using insert by simp
also have "\<dots> = sup (inf x (\<Squnion>\<^sub>f\<^sub>i\<^sub>nB)) (inf (\<Squnion>\<^sub>f\<^sub>i\<^sub>nA) (\<Squnion>\<^sub>f\<^sub>i\<^sub>nB))" by(rule inf_sup_distrib2)
also have "\<dots> = sup (\<Squnion>\<^sub>f\<^sub>i\<^sub>n{inf x b|b. b \<in> B}) (\<Squnion>\<^sub>f\<^sub>i\<^sub>n{inf a b|a b. a \<in> A \<and> b \<in> B})"
using insert by(simp add:inf_Sup1_distrib[OF B])
also have "\<dots> = \<Squnion>\<^sub>f\<^sub>i\<^sub>n({inf x b |b. b \<in> B} \<union> {inf a b |a b. a \<in> A \<and> b \<in> B})"
(is "_ = \<Squnion>\<^sub>f\<^sub>i\<^sub>n?M")
using B insert
by (simp add: Sup_fin.union [OF finB _ finAB ne])
also have "?M = {inf a b |a b. a \<in> insert x A \<and> b \<in> B}"
by blast
finally show ?case .
qed
end
context complete_lattice
begin
lemma Inf_fin_Inf:
assumes "finite A" and "A \<noteq> {}"
shows "\<Sqinter>\<^sub>f\<^sub>i\<^sub>nA = \<Sqinter>A"
proof -
from assms obtain b B where "A = insert b B" and "finite B" by auto
then show ?thesis
by (simp add: Inf_fin.eq_fold inf_Inf_fold_inf inf.commute [of b])
qed
lemma Sup_fin_Sup:
assumes "finite A" and "A \<noteq> {}"
shows "\<Squnion>\<^sub>f\<^sub>i\<^sub>nA = \<Squnion>A"
proof -
from assms obtain b B where "A = insert b B" and "finite B" by auto
then show ?thesis
by (simp add: Sup_fin.eq_fold sup_Sup_fold_sup sup.commute [of b])
qed
end
subsection \<open>Minimum and Maximum over non-empty sets\<close>
context linorder
begin
sublocale Min: semilattice_order_set min less_eq less
+ Max: semilattice_order_set max greater_eq greater
defines
Min = Min.F and Max = Max.F ..
end
syntax
"_MIN1" :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b" ("(3MIN _./ _)" [0, 10] 10)
"_MIN" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b" ("(3MIN _\<in>_./ _)" [0, 0, 10] 10)
"_MAX1" :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b" ("(3MAX _./ _)" [0, 10] 10)
"_MAX" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b" ("(3MAX _\<in>_./ _)" [0, 0, 10] 10)
translations
"MIN x y. f" \<rightleftharpoons> "MIN x. MIN y. f"
"MIN x. f" \<rightleftharpoons> "CONST Min (CONST range (\<lambda>x. f))"
"MIN x\<in>A. f" \<rightleftharpoons> "CONST Min ((\<lambda>x. f) ` A)"
"MAX x y. f" \<rightleftharpoons> "MAX x. MAX y. f"
"MAX x. f" \<rightleftharpoons> "CONST Max (CONST range (\<lambda>x. f))"
"MAX x\<in>A. f" \<rightleftharpoons> "CONST Max ((\<lambda>x. f) ` A)"
text \<open>An aside: \<^const>\<open>Min\<close>/\<^const>\<open>Max\<close> on linear orders as special case of \<^const>\<open>Inf_fin\<close>/\<^const>\<open>Sup_fin\<close>\<close>
lemma Inf_fin_Min:
"Inf_fin = (Min :: 'a::{semilattice_inf, linorder} set \<Rightarrow> 'a)"
by (simp add: Inf_fin_def Min_def inf_min)
lemma Sup_fin_Max:
"Sup_fin = (Max :: 'a::{semilattice_sup, linorder} set \<Rightarrow> 'a)"
by (simp add: Sup_fin_def Max_def sup_max)
context linorder
begin
lemma dual_min:
"ord.min greater_eq = max"
by (auto simp add: ord.min_def max_def fun_eq_iff)
lemma dual_max:
"ord.max greater_eq = min"
by (auto simp add: ord.max_def min_def fun_eq_iff)
lemma dual_Min:
"linorder.Min greater_eq = Max"
proof -
interpret dual: linorder greater_eq greater by (fact dual_linorder)
show ?thesis by (simp add: dual.Min_def dual_min Max_def)
qed
lemma dual_Max:
"linorder.Max greater_eq = Min"
proof -
interpret dual: linorder greater_eq greater by (fact dual_linorder)
show ?thesis by (simp add: dual.Max_def dual_max Min_def)
qed
lemmas Min_singleton = Min.singleton
lemmas Max_singleton = Max.singleton
lemmas Min_insert = Min.insert
lemmas Max_insert = Max.insert
lemmas Min_Un = Min.union
lemmas Max_Un = Max.union
lemmas hom_Min_commute = Min.hom_commute
lemmas hom_Max_commute = Max.hom_commute
lemma Min_in [simp]:
assumes "finite A" and "A \<noteq> {}"
shows "Min A \<in> A"
using assms by (auto simp add: min_def Min.closed)
lemma Max_in [simp]:
assumes "finite A" and "A \<noteq> {}"
shows "Max A \<in> A"
using assms by (auto simp add: max_def Max.closed)
lemma Min_insert2:
assumes "finite A" and min: "\<And>b. b \<in> A \<Longrightarrow> a \<le> b"
shows "Min (insert a A) = a"
proof (cases "A = {}")
case True
then show ?thesis by simp
next
case False
with \<open>finite A\<close> have "Min (insert a A) = min a (Min A)"
by simp
moreover from \<open>finite A\<close> \<open>A \<noteq> {}\<close> min have "a \<le> Min A" by simp
ultimately show ?thesis by (simp add: min.absorb1)
qed
lemma Max_insert2:
assumes "finite A" and max: "\<And>b. b \<in> A \<Longrightarrow> b \<le> a"
shows "Max (insert a A) = a"
proof (cases "A = {}")
case True
then show ?thesis by simp
next
case False
with \<open>finite A\<close> have "Max (insert a A) = max a (Max A)"
by simp
moreover from \<open>finite A\<close> \<open>A \<noteq> {}\<close> max have "Max A \<le> a" by simp
ultimately show ?thesis by (simp add: max.absorb1)
qed
lemma Max_const[simp]: "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> Max ((\<lambda>_. c) ` A) = c"
using Max_in image_is_empty by blast
lemma Min_const[simp]: "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> Min ((\<lambda>_. c) ` A) = c"
using Min_in image_is_empty by blast
lemma Min_le [simp]:
assumes "finite A" and "x \<in> A"
shows "Min A \<le> x"
using assms by (fact Min.coboundedI)
lemma Max_ge [simp]:
assumes "finite A" and "x \<in> A"
shows "x \<le> Max A"
using assms by (fact Max.coboundedI)
lemma Min_eqI:
assumes "finite A"
assumes "\<And>y. y \<in> A \<Longrightarrow> y \<ge> x"
and "x \<in> A"
shows "Min A = x"
proof (rule order.antisym)
from \<open>x \<in> A\<close> have "A \<noteq> {}" by auto
with assms show "Min A \<ge> x" by simp
next
from assms show "x \<ge> Min A" by simp
qed
lemma Max_eqI:
assumes "finite A"
assumes "\<And>y. y \<in> A \<Longrightarrow> y \<le> x"
and "x \<in> A"
shows "Max A = x"
proof (rule order.antisym)
from \<open>x \<in> A\<close> have "A \<noteq> {}" by auto
with assms show "Max A \<le> x" by simp
next
from assms show "x \<le> Max A" by simp
qed
lemma eq_Min_iff:
"\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> m = Min A \<longleftrightarrow> m \<in> A \<and> (\<forall>a \<in> A. m \<le> a)"
by (meson Min_in Min_le order.antisym)
lemma Min_eq_iff:
"\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> Min A = m \<longleftrightarrow> m \<in> A \<and> (\<forall>a \<in> A. m \<le> a)"
by (meson Min_in Min_le order.antisym)
lemma eq_Max_iff:
"\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> m = Max A \<longleftrightarrow> m \<in> A \<and> (\<forall>a \<in> A. a \<le> m)"
by (meson Max_in Max_ge order.antisym)
lemma Max_eq_iff:
"\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> Max A = m \<longleftrightarrow> m \<in> A \<and> (\<forall>a \<in> A. a \<le> m)"
by (meson Max_in Max_ge order.antisym)
context
fixes A :: "'a set"
assumes fin_nonempty: "finite A" "A \<noteq> {}"
begin
lemma Min_ge_iff [simp]:
"x \<le> Min A \<longleftrightarrow> (\<forall>a\<in>A. x \<le> a)"
using fin_nonempty by (fact Min.bounded_iff)
lemma Max_le_iff [simp]:
"Max A \<le> x \<longleftrightarrow> (\<forall>a\<in>A. a \<le> x)"
using fin_nonempty by (fact Max.bounded_iff)
lemma Min_gr_iff [simp]:
"x < Min A \<longleftrightarrow> (\<forall>a\<in>A. x < a)"
using fin_nonempty by (induct rule: finite_ne_induct) simp_all
lemma Max_less_iff [simp]:
"Max A < x \<longleftrightarrow> (\<forall>a\<in>A. a < x)"
using fin_nonempty by (induct rule: finite_ne_induct) simp_all
lemma Min_le_iff:
"Min A \<le> x \<longleftrightarrow> (\<exists>a\<in>A. a \<le> x)"
using fin_nonempty by (induct rule: finite_ne_induct) (simp_all add: min_le_iff_disj)
lemma Max_ge_iff:
"x \<le> Max A \<longleftrightarrow> (\<exists>a\<in>A. x \<le> a)"
using fin_nonempty by (induct rule: finite_ne_induct) (simp_all add: le_max_iff_disj)
lemma Min_less_iff:
"Min A < x \<longleftrightarrow> (\<exists>a\<in>A. a < x)"
using fin_nonempty by (induct rule: finite_ne_induct) (simp_all add: min_less_iff_disj)
lemma Max_gr_iff:
"x < Max A \<longleftrightarrow> (\<exists>a\<in>A. x < a)"
using fin_nonempty by (induct rule: finite_ne_induct) (simp_all add: less_max_iff_disj)
end
text \<open>Handy results about @{term Max} and @{term Min} by Chelsea Edmonds\<close>
lemma obtains_Max:
assumes "finite A" and "A \<noteq> {}"
obtains x where "x \<in> A" and "Max A = x"
using assms Max_in by blast
lemma obtains_MAX:
assumes "finite A" and "A \<noteq> {}"
obtains x where "x \<in> A" and "Max (f ` A) = f x"
using obtains_Max
by (metis (mono_tags, opaque_lifting) assms(1) assms(2) empty_is_image finite_imageI image_iff)
lemma obtains_Min:
assumes "finite A" and "A \<noteq> {}"
obtains x where "x \<in> A" and "Min A = x"
using assms Min_in by blast
lemma obtains_MIN:
assumes "finite A" and "A \<noteq> {}"
obtains x where "x \<in> A" and "Min (f ` A) = f x"
using obtains_Min assms empty_is_image finite_imageI image_iff
by (metis (mono_tags, opaque_lifting))
lemma Max_eq_if:
assumes "finite A" "finite B" "\<forall>a\<in>A. \<exists>b\<in>B. a \<le> b" "\<forall>b\<in>B. \<exists>a\<in>A. b \<le> a"
shows "Max A = Max B"
proof cases
assume "A = {}" thus ?thesis using assms by simp
next
assume "A \<noteq> {}" thus ?thesis using assms
by(blast intro: order.antisym Max_in Max_ge_iff[THEN iffD2])
qed
lemma Min_antimono:
assumes "M \<subseteq> N" and "M \<noteq> {}" and "finite N"
shows "Min N \<le> Min M"
using assms by (fact Min.subset_imp)
lemma Max_mono:
assumes "M \<subseteq> N" and "M \<noteq> {}" and "finite N"
shows "Max M \<le> Max N"
using assms by (fact Max.subset_imp)
lemma mono_Min_commute:
assumes "mono f"
assumes "finite A" and "A \<noteq> {}"
shows "f (Min A) = Min (f ` A)"
proof (rule linorder_class.Min_eqI [symmetric])
from \<open>finite A\<close> show "finite (f ` A)" by simp
from assms show "f (Min A) \<in> f ` A" by simp
fix x
assume "x \<in> f ` A"
then obtain y where "y \<in> A" and "x = f y" ..
with assms have "Min A \<le> y" by auto
with \<open>mono f\<close> have "f (Min A) \<le> f y" by (rule monoE)
with \<open>x = f y\<close> show "f (Min A) \<le> x" by simp
qed
lemma mono_Max_commute:
assumes "mono f"
assumes "finite A" and "A \<noteq> {}"
shows "f (Max A) = Max (f ` A)"
proof (rule linorder_class.Max_eqI [symmetric])
from \<open>finite A\<close> show "finite (f ` A)" by simp
from assms show "f (Max A) \<in> f ` A" by simp
fix x
assume "x \<in> f ` A"
then obtain y where "y \<in> A" and "x = f y" ..
with assms have "y \<le> Max A" by auto
with \<open>mono f\<close> have "f y \<le> f (Max A)" by (rule monoE)
with \<open>x = f y\<close> show "x \<le> f (Max A)" by simp
qed
lemma finite_linorder_max_induct [consumes 1, case_names empty insert]:
assumes fin: "finite A"
and empty: "P {}"
and insert: "\<And>b A. finite A \<Longrightarrow> \<forall>a\<in>A. a < b \<Longrightarrow> P A \<Longrightarrow> P (insert b A)"
shows "P A"
using fin empty insert
proof (induct rule: finite_psubset_induct)
case (psubset A)
have IH: "\<And>B. \<lbrakk>B < A; P {}; (\<And>A b. \<lbrakk>finite A; \<forall>a\<in>A. a<b; P A\<rbrakk> \<Longrightarrow> P (insert b A))\<rbrakk> \<Longrightarrow> P B" by fact
have fin: "finite A" by fact
have empty: "P {}" by fact
have step: "\<And>b A. \<lbrakk>finite A; \<forall>a\<in>A. a < b; P A\<rbrakk> \<Longrightarrow> P (insert b A)" by fact
show "P A"
proof (cases "A = {}")
assume "A = {}"
then show "P A" using \<open>P {}\<close> by simp
next
let ?B = "A - {Max A}"
let ?A = "insert (Max A) ?B"
have "finite ?B" using \<open>finite A\<close> by simp
assume "A \<noteq> {}"
with \<open>finite A\<close> have "Max A \<in> A" by auto
then have A: "?A = A" using insert_Diff_single insert_absorb by auto
then have "P ?B" using \<open>P {}\<close> step IH [of ?B] by blast
moreover
have "\<forall>a\<in>?B. a < Max A" using Max_ge [OF \<open>finite A\<close>] by fastforce
ultimately show "P A" using A insert_Diff_single step [OF \<open>finite ?B\<close>] by fastforce
qed
qed
lemma finite_linorder_min_induct [consumes 1, case_names empty insert]:
"\<lbrakk>finite A; P {}; \<And>b A. \<lbrakk>finite A; \<forall>a\<in>A. b < a; P A\<rbrakk> \<Longrightarrow> P (insert b A)\<rbrakk> \<Longrightarrow> P A"
by (rule linorder.finite_linorder_max_induct [OF dual_linorder])
lemma finite_ranking_induct[consumes 1, case_names empty insert]:
fixes f :: "'b \<Rightarrow> 'a"
assumes "finite S"
assumes "P {}"
assumes "\<And>x S. finite S \<Longrightarrow> (\<And>y. y \<in> S \<Longrightarrow> f y \<le> f x) \<Longrightarrow> P S \<Longrightarrow> P (insert x S)"
shows "P S"
using \<open>finite S\<close>
proof (induction rule: finite_psubset_induct)
case (psubset A)
{
assume "A \<noteq> {}"
hence "f ` A \<noteq> {}" and "finite (f ` A)"
using psubset finite_image_iff by simp+
then obtain a where "f a = Max (f ` A)" and "a \<in> A"
by (metis Max_in[of "f ` A"] imageE)
then have "P (A - {a})"
using psubset member_remove by blast
moreover
have "\<And>y. y \<in> A \<Longrightarrow> f y \<le> f a"
using \<open>f a = Max (f ` A)\<close> \<open>finite (f ` A)\<close> by simp
ultimately
have ?case
by (metis \<open>a \<in> A\<close> DiffD1 insert_Diff assms(3) finite_Diff psubset.hyps)
}
thus ?case
using assms(2) by blast
qed
lemma Least_Min:
assumes "finite {a. P a}" and "\<exists>a. P a"
shows "(LEAST a. P a) = Min {a. P a}"
proof -
{ fix A :: "'a set"
assume A: "finite A" "A \<noteq> {}"
have "(LEAST a. a \<in> A) = Min A"
using A proof (induct A rule: finite_ne_induct)
case singleton show ?case by (rule Least_equality) simp_all
next
case (insert a A)
have "(LEAST b. b = a \<or> b \<in> A) = min a (LEAST a. a \<in> A)"
by (auto intro!: Least_equality simp add: min_def not_le Min_le_iff insert.hyps dest!: less_imp_le)
with insert show ?case by simp
qed
} from this [of "{a. P a}"] assms show ?thesis by simp
qed
lemma infinite_growing:
assumes "X \<noteq> {}"
assumes *: "\<And>x. x \<in> X \<Longrightarrow> \<exists>y\<in>X. y > x"
shows "\<not> finite X"
proof
assume "finite X"
with \<open>X \<noteq> {}\<close> have "Max X \<in> X" "\<forall>x\<in>X. x \<le> Max X"
by auto
with *[of "Max X"] show False
by auto
qed
end
lemma sum_le_card_Max: "finite A \<Longrightarrow> sum f A \<le> card A * Max (f ` A)"
using sum_bounded_above[of A f "Max (f ` A)"] by simp
lemma card_Min_le_sum: "finite A \<Longrightarrow> card A * Min (f ` A) \<le> sum f A"
using sum_bounded_below[of A "Min (f ` A)" f] by simp
context linordered_ab_semigroup_add
begin
lemma Min_add_commute:
fixes k
assumes "finite S" and "S \<noteq> {}"
shows "Min ((\<lambda>x. f x + k) ` S) = Min(f ` S) + k"
proof -
have m: "\<And>x y. min x y + k = min (x+k) (y+k)"
by (simp add: min_def order.antisym add_right_mono)
have "(\<lambda>x. f x + k) ` S = (\<lambda>y. y + k) ` (f ` S)" by auto
also have "Min \<dots> = Min (f ` S) + k"
using assms hom_Min_commute [of "\<lambda>y. y+k" "f ` S", OF m, symmetric] by simp
finally show ?thesis by simp
qed
lemma Max_add_commute:
fixes k
assumes "finite S" and "S \<noteq> {}"
shows "Max ((\<lambda>x. f x + k) ` S) = Max(f ` S) + k"
proof -
have m: "\<And>x y. max x y + k = max (x+k) (y+k)"
by (simp add: max_def order.antisym add_right_mono)
have "(\<lambda>x. f x + k) ` S = (\<lambda>y. y + k) ` (f ` S)" by auto
also have "Max \<dots> = Max (f ` S) + k"
using assms hom_Max_commute [of "\<lambda>y. y+k" "f ` S", OF m, symmetric] by simp
finally show ?thesis by simp
qed
end
context linordered_ab_group_add
begin
lemma minus_Max_eq_Min [simp]:
"finite S \<Longrightarrow> S \<noteq> {} \<Longrightarrow> - Max S = Min (uminus ` S)"
by (induct S rule: finite_ne_induct) (simp_all add: minus_max_eq_min)
lemma minus_Min_eq_Max [simp]:
"finite S \<Longrightarrow> S \<noteq> {} \<Longrightarrow> - Min S = Max (uminus ` S)"
by (induct S rule: finite_ne_induct) (simp_all add: minus_min_eq_max)
end
context complete_linorder
begin
lemma Min_Inf:
assumes "finite A" and "A \<noteq> {}"
shows "Min A = Inf A"
proof -
from assms obtain b B where "A = insert b B" and "finite B" by auto
then show ?thesis
by (simp add: Min.eq_fold complete_linorder_inf_min [symmetric] inf_Inf_fold_inf inf.commute [of b])
qed
lemma Max_Sup:
assumes "finite A" and "A \<noteq> {}"
shows "Max A = Sup A"
proof -
from assms obtain b B where "A = insert b B" and "finite B" by auto
then show ?thesis
by (simp add: Max.eq_fold complete_linorder_sup_max [symmetric] sup_Sup_fold_sup sup.commute [of b])
qed
end
lemma disjnt_ge_max: \<^marker>\<open>contributor \<open>Lars Hupel\<close>\<close>
\<open>disjnt X Y\<close> if \<open>finite Y\<close> \<open>\<And>x. x \<in> X \<Longrightarrow> x > Max Y\<close>
using that by (auto simp add: disjnt_def) (use Max_less_iff in blast)
subsection \<open>Arg Min\<close>
context ord
begin
definition is_arg_min :: "('b \<Rightarrow> 'a) \<Rightarrow> ('b \<Rightarrow> bool) \<Rightarrow> 'b \<Rightarrow> bool" where
"is_arg_min f P x = (P x \<and> \<not>(\<exists>y. P y \<and> f y < f x))"
definition arg_min :: "('b \<Rightarrow> 'a) \<Rightarrow> ('b \<Rightarrow> bool) \<Rightarrow> 'b" where
"arg_min f P = (SOME x. is_arg_min f P x)"
definition arg_min_on :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b set \<Rightarrow> 'b" where
"arg_min_on f S = arg_min f (\<lambda>x. x \<in> S)"
end
syntax
"_arg_min" :: "('b \<Rightarrow> 'a) \<Rightarrow> pttrn \<Rightarrow> bool \<Rightarrow> 'b"
("(3ARG'_MIN _ _./ _)" [1000, 0, 10] 10)
translations
"ARG_MIN f x. P" \<rightleftharpoons> "CONST arg_min f (\<lambda>x. P)"
lemma is_arg_min_linorder: fixes f :: "'a \<Rightarrow> 'b :: linorder"
shows "is_arg_min f P x = (P x \<and> (\<forall>y. P y \<longrightarrow> f x \<le> f y))"
by(auto simp add: is_arg_min_def)
lemma is_arg_min_antimono: fixes f :: "'a \<Rightarrow> ('b::order)"
shows "\<lbrakk> is_arg_min f P x; f y \<le> f x; P y \<rbrakk> \<Longrightarrow> is_arg_min f P y"
by (simp add: order.order_iff_strict is_arg_min_def)
lemma arg_minI:
"\<lbrakk> P x;
\<And>y. P y \<Longrightarrow> \<not> f y < f x;
\<And>x. \<lbrakk> P x; \<forall>y. P y \<longrightarrow> \<not> f y < f x \<rbrakk> \<Longrightarrow> Q x \<rbrakk>
\<Longrightarrow> Q (arg_min f P)"
unfolding arg_min_def is_arg_min_def
by (blast intro!: someI2_ex)
lemma arg_min_equality:
"\<lbrakk> P k; \<And>x. P x \<Longrightarrow> f k \<le> f x \<rbrakk> \<Longrightarrow> f (arg_min f P) = f k"
for f :: "_ \<Rightarrow> 'a::order"
by (rule arg_minI; force simp: not_less less_le_not_le)
lemma wf_linord_ex_has_least:
"\<lbrakk> wf r; \<forall>x y. (x, y) \<in> r\<^sup>+ \<longleftrightarrow> (y, x) \<notin> r\<^sup>*; P k \<rbrakk>
\<Longrightarrow> \<exists>x. P x \<and> (\<forall>y. P y \<longrightarrow> (m x, m y) \<in> r\<^sup>*)"
by (force dest!: wf_trancl [THEN wf_eq_minimal [THEN iffD1, THEN spec], where x = "m ` Collect P"])
lemma ex_has_least_nat: "P k \<Longrightarrow> \<exists>x. P x \<and> (\<forall>y. P y \<longrightarrow> m x \<le> m y)"
for m :: "'a \<Rightarrow> nat"
unfolding pred_nat_trancl_eq_le [symmetric]
apply (rule wf_pred_nat [THEN wf_linord_ex_has_least])
apply (simp add: less_eq linorder_not_le pred_nat_trancl_eq_le)
by assumption
lemma arg_min_nat_lemma:
"P k \<Longrightarrow> P(arg_min m P) \<and> (\<forall>y. P y \<longrightarrow> m (arg_min m P) \<le> m y)"
for m :: "'a \<Rightarrow> nat"
unfolding arg_min_def is_arg_min_linorder
apply (rule someI_ex)
apply (erule ex_has_least_nat)
done
lemmas arg_min_natI = arg_min_nat_lemma [THEN conjunct1]
lemma is_arg_min_arg_min_nat: fixes m :: "'a \<Rightarrow> nat"
shows "P x \<Longrightarrow> is_arg_min m P (arg_min m P)"
by (metis arg_min_nat_lemma is_arg_min_linorder)
lemma arg_min_nat_le: "P x \<Longrightarrow> m (arg_min m P) \<le> m x"
for m :: "'a \<Rightarrow> nat"
by (rule arg_min_nat_lemma [THEN conjunct2, THEN spec, THEN mp])
lemma ex_min_if_finite:
"\<lbrakk> finite S; S \<noteq> {} \<rbrakk> \<Longrightarrow> \<exists>m\<in>S. \<not>(\<exists>x\<in>S. x < (m::'a::order))"
by(induction rule: finite.induct) (auto intro: order.strict_trans)
lemma ex_is_arg_min_if_finite: fixes f :: "'a \<Rightarrow> 'b :: order"
shows "\<lbrakk> finite S; S \<noteq> {} \<rbrakk> \<Longrightarrow> \<exists>x. is_arg_min f (\<lambda>x. x \<in> S) x"
unfolding is_arg_min_def
using ex_min_if_finite[of "f ` S"]
by auto
lemma arg_min_SOME_Min:
"finite S \<Longrightarrow> arg_min_on f S = (SOME y. y \<in> S \<and> f y = Min(f ` S))"
unfolding arg_min_on_def arg_min_def is_arg_min_linorder
apply(rule arg_cong[where f = Eps])
apply (auto simp: fun_eq_iff intro: Min_eqI[symmetric])
done
lemma arg_min_if_finite: fixes f :: "'a \<Rightarrow> 'b :: order"
assumes "finite S" "S \<noteq> {}"
shows "arg_min_on f S \<in> S" and "\<not>(\<exists>x\<in>S. f x < f (arg_min_on f S))"
using ex_is_arg_min_if_finite[OF assms, of f]
unfolding arg_min_on_def arg_min_def is_arg_min_def
by(auto dest!: someI_ex)
lemma arg_min_least: fixes f :: "'a \<Rightarrow> 'b :: linorder"
shows "\<lbrakk> finite S; S \<noteq> {}; y \<in> S \<rbrakk> \<Longrightarrow> f(arg_min_on f S) \<le> f y"
by(simp add: arg_min_SOME_Min inv_into_def2[symmetric] f_inv_into_f)
lemma arg_min_inj_eq: fixes f :: "'a \<Rightarrow> 'b :: order"
shows "\<lbrakk> inj_on f {x. P x}; P a; \<forall>y. P y \<longrightarrow> f a \<le> f y \<rbrakk> \<Longrightarrow> arg_min f P = a"
apply(simp add: arg_min_def is_arg_min_def)
apply(rule someI2[of _ a])
apply (simp add: less_le_not_le)
by (metis inj_on_eq_iff less_le mem_Collect_eq)
subsection \<open>Arg Max\<close>
context ord
begin
definition is_arg_max :: "('b \<Rightarrow> 'a) \<Rightarrow> ('b \<Rightarrow> bool) \<Rightarrow> 'b \<Rightarrow> bool" where
"is_arg_max f P x = (P x \<and> \<not>(\<exists>y. P y \<and> f y > f x))"
definition arg_max :: "('b \<Rightarrow> 'a) \<Rightarrow> ('b \<Rightarrow> bool) \<Rightarrow> 'b" where
"arg_max f P = (SOME x. is_arg_max f P x)"
definition arg_max_on :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b set \<Rightarrow> 'b" where
"arg_max_on f S = arg_max f (\<lambda>x. x \<in> S)"
end
syntax
"_arg_max" :: "('b \<Rightarrow> 'a) \<Rightarrow> pttrn \<Rightarrow> bool \<Rightarrow> 'a"
("(3ARG'_MAX _ _./ _)" [1000, 0, 10] 10)
translations
"ARG_MAX f x. P" \<rightleftharpoons> "CONST arg_max f (\<lambda>x. P)"
lemma is_arg_max_linorder: fixes f :: "'a \<Rightarrow> 'b :: linorder"
shows "is_arg_max f P x = (P x \<and> (\<forall>y. P y \<longrightarrow> f x \<ge> f y))"
by(auto simp add: is_arg_max_def)
lemma arg_maxI:
"P x \<Longrightarrow>
(\<And>y. P y \<Longrightarrow> \<not> f y > f x) \<Longrightarrow>
(\<And>x. P x \<Longrightarrow> \<forall>y. P y \<longrightarrow> \<not> f y > f x \<Longrightarrow> Q x) \<Longrightarrow>
Q (arg_max f P)"
unfolding arg_max_def is_arg_max_def
by (blast intro!: someI2_ex elim: )
lemma arg_max_equality:
"\<lbrakk> P k; \<And>x. P x \<Longrightarrow> f x \<le> f k \<rbrakk> \<Longrightarrow> f (arg_max f P) = f k"
for f :: "_ \<Rightarrow> 'a::order"
apply (rule arg_maxI [where f = f])
apply assumption
apply (simp add: less_le_not_le)
by (metis le_less)
lemma ex_has_greatest_nat_lemma:
"P k \<Longrightarrow> \<forall>x. P x \<longrightarrow> (\<exists>y. P y \<and> \<not> f y \<le> f x) \<Longrightarrow> \<exists>y. P y \<and> \<not> f y < f k + n"
for f :: "'a \<Rightarrow> nat"
by (induct n) (force simp: le_Suc_eq)+
lemma ex_has_greatest_nat:
assumes "P k"
and "\<forall>y. P y \<longrightarrow> (f:: 'a \<Rightarrow> nat) y < b"
shows "\<exists>x. P x \<and> (\<forall>y. P y \<longrightarrow> f y \<le> f x)"
proof (rule ccontr)
assume "\<nexists>x. P x \<and> (\<forall>y. P y \<longrightarrow> f y \<le> f x)"
then have "\<forall>x. P x \<longrightarrow> (\<exists>y. P y \<and> \<not> f y \<le> f x)"
by auto
then have "\<exists>y. P y \<and> \<not> f y < f k + (b - f k)"
using assms ex_has_greatest_nat_lemma[of P k f "b - f k"]
by blast
then show "False"
using assms by auto
qed
lemma arg_max_nat_lemma:
"\<lbrakk> P k; \<forall>y. P y \<longrightarrow> f y < b \<rbrakk>
\<Longrightarrow> P (arg_max f P) \<and> (\<forall>y. P y \<longrightarrow> f y \<le> f (arg_max f P))"
for f :: "'a \<Rightarrow> nat"
unfolding arg_max_def is_arg_max_linorder
by (rule someI_ex) (metis ex_has_greatest_nat)
lemmas arg_max_natI = arg_max_nat_lemma [THEN conjunct1]
lemma arg_max_nat_le: "P x \<Longrightarrow> \<forall>y. P y \<longrightarrow> f y < b \<Longrightarrow> f x \<le> f (arg_max f P)"
for f :: "'a \<Rightarrow> nat"
using arg_max_nat_lemma by metis
end