(* Title: Pure/Syntax/syntax_phases.ML
Author: Makarius
Main phases of inner syntax processing, with standard implementations
of parse/unparse operations.
*)
signature SYNTAX_PHASES =
sig
val markup_free: Proof.context -> string -> Markup.T list
val reports_of_scope: Position.T list -> Position.report list
val decode_sort: term -> sort
val decode_typ: term -> typ
val decode_term: Proof.context ->
Position.report_text list * term Exn.result -> Position.report_text list * term Exn.result
val parse_ast_pattern: Proof.context -> string * string -> Ast.ast
val term_of_typ: Proof.context -> typ -> term
val print_checks: Proof.context -> unit
val typ_check: int -> string -> (Proof.context -> typ list -> typ list) ->
Context.generic -> Context.generic
val term_check: int -> string -> (Proof.context -> term list -> term list) ->
Context.generic -> Context.generic
val typ_uncheck: int -> string -> (Proof.context -> typ list -> typ list) ->
Context.generic -> Context.generic
val term_uncheck: int -> string -> (Proof.context -> term list -> term list) ->
Context.generic -> Context.generic
val typ_check': int -> string ->
(typ list -> Proof.context -> (typ list * Proof.context) option) ->
Context.generic -> Context.generic
val term_check': int -> string ->
(term list -> Proof.context -> (term list * Proof.context) option) ->
Context.generic -> Context.generic
val typ_uncheck': int -> string ->
(typ list -> Proof.context -> (typ list * Proof.context) option) ->
Context.generic -> Context.generic
val term_uncheck': int -> string ->
(term list -> Proof.context -> (term list * Proof.context) option) ->
Context.generic -> Context.generic
end
structure Syntax_Phases: SYNTAX_PHASES =
struct
(** markup logical entities **)
fun markup_class ctxt c =
[Name_Space.markup (Type.class_space (Proof_Context.tsig_of ctxt)) c];
fun markup_type ctxt c =
[Name_Space.markup (Type.type_space (Proof_Context.tsig_of ctxt)) c];
fun markup_const ctxt c =
[Name_Space.markup (Consts.space_of (Proof_Context.consts_of ctxt)) c];
fun markup_free ctxt x =
let
val m1 =
if Variable.is_fixed ctxt x then Variable.markup_fixed ctxt x
else if not (Variable.is_body ctxt) orelse Syntax.is_pretty_global ctxt then Markup.fixed x
else Markup.intensify;
val m2 = Variable.markup ctxt x;
in [m1, m2] end;
fun markup_var xi = [Markup.name (Term.string_of_vname xi) Markup.var];
fun markup_bound def ps (name, id) =
Markup.bound :: map (fn pos => Position.make_entity_markup def id Markup.boundN (name, pos)) ps;
fun markup_entity_cache ctxt =
Symtab.unsynchronized_cache (fn c =>
Syntax.get_consts (Proof_Context.syntax_of ctxt) c
|> maps (Lexicon.unmark
{case_class = markup_class ctxt,
case_type = markup_type ctxt,
case_const = markup_const ctxt,
case_fixed = markup_free ctxt,
case_default = K []}))
|> #apply;
(** reports of implicit variable scope **)
fun reports_of_scope [] = []
| reports_of_scope (def_pos :: ps) =
let
val id = serial ();
fun entity def = Position.make_entity_markup def id "" ("", def_pos);
in
map (rpair Markup.bound) (def_pos :: ps) @
((def_pos, entity {def = true}) :: map (rpair (entity {def = false})) ps)
end;
(** decode parse trees **)
(* decode_sort *)
fun decode_sort tm =
let
fun err () = raise TERM ("decode_sort: bad encoding of classes", [tm]);
fun class s = Lexicon.unmark_class s handle Fail _ => err ();
fun classes (Const (s, _)) = [class s]
| classes (Const ("_classes", _) $ Const (s, _) $ cs) = class s :: classes cs
| classes _ = err ();
fun sort (Const ("_dummy_sort", _)) = dummyS
| sort (Const ("_topsort", _)) = []
| sort (Const ("_sort", _) $ cs) = classes cs
| sort (Const (s, _)) = [class s]
| sort _ = err ();
in sort tm end;
(* decode_typ *)
fun decode_pos (Free (s, _)) =
if is_some (Term_Position.decode s) then SOME s else NONE
| decode_pos _ = NONE;
fun decode_typ tm =
let
fun err () = raise TERM ("decode_typ: bad encoding of type", [tm]);
fun typ ps sort tm =
(case tm of
Const ("_tfree", _) $ t => typ ps sort t
| Const ("_tvar", _) $ t => typ ps sort t
| Const ("_ofsort", _) $ t $ s =>
(case decode_pos s of
SOME p => typ (p :: ps) sort t
| NONE =>
if is_none sort then typ ps (SOME (decode_sort s)) t
else err ())
| Const ("_dummy_ofsort", _) $ s => TFree ("'_dummy_", decode_sort s)
| Free (x, _) => TFree (x, ps @ the_default dummyS sort)
| Var (xi, _) => TVar (xi, ps @ the_default dummyS sort)
| _ =>
if null ps andalso is_none sort then
let
val (head, args) = Term.strip_comb tm;
val a =
(case head of
Const (c, _) => (Lexicon.unmark_type c handle Fail _ => err ())
| _ => err ());
in Type (a, map (typ [] NONE) args) end
else err ());
in typ [] NONE tm end;
(* parsetree_to_ast *)
fun parsetree_to_ast ctxt trf parsetree =
let
val reports = Unsynchronized.ref ([]: Position.report_text list);
fun report pos = Position.store_reports reports [pos];
val append_reports = Position.append_reports reports;
fun report_pos tok =
if Lexicon.is_literal tok andalso null (Lexicon.literal_markup (Lexicon.str_of_token tok))
then Position.none else Lexicon.pos_of_token tok;
val markup_cache = markup_entity_cache ctxt;
fun report_literals a ts = List.app (report_literal a) ts
and report_literal a t =
(case t of
Parser.Markup (_, ts) => report_literals a ts
| Parser.Node _ => ()
| Parser.Tip tok =>
if Lexicon.is_literal tok then report (report_pos tok) markup_cache a else ());
fun trans a args =
(case trf a of
NONE => Ast.mk_appl (Ast.Constant a) args
| SOME f => f ctxt args);
fun asts_of_token tok =
if Lexicon.valued_token tok
then [Ast.Variable (Lexicon.str_of_token tok)]
else [];
fun ast_of_position tok =
Ast.Variable (Term_Position.encode (report_pos tok));
fun ast_of_dummy a tok =
Ast.Appl [Ast.Constant "_constrain", Ast.Constant a, ast_of_position tok];
fun asts_of_position c tok =
[Ast.Appl [Ast.Constant c, ast_of (Parser.Tip tok), ast_of_position tok]]
and asts_of (Parser.Markup ({markup, range = (pos, _), ...}, pts)) =
let
val asts = maps asts_of pts;
val _ = append_reports (map (pair pos) markup);
in asts end
| asts_of (Parser.Node ({const = "", ...}, pts)) = maps asts_of pts
| asts_of (Parser.Node ({const = "_class_name", ...}, [Parser.Tip tok])) =
let
val pos = report_pos tok;
val (c, rs) = Proof_Context.check_class ctxt (Lexicon.str_of_token tok, pos);
val _ = append_reports rs;
in [Ast.Constant (Lexicon.mark_class c)] end
| asts_of (Parser.Node ({const = "_type_name", ...}, [Parser.Tip tok])) =
let
val pos = report_pos tok;
val (c, rs) =
Proof_Context.check_type_name {proper = true, strict = false} ctxt
(Lexicon.str_of_token tok, pos)
|>> dest_Type_name;
val _ = append_reports rs;
in [Ast.Constant (Lexicon.mark_type c)] end
| asts_of (Parser.Node ({const = "_position", ...}, [Parser.Tip tok])) =
asts_of_position "_constrain" tok
| asts_of (Parser.Node ({const = "_position_sort", ...}, [Parser.Tip tok])) =
asts_of_position "_ofsort" tok
| asts_of (Parser.Node ({const = a as "\<^const>Pure.dummy_pattern", ...}, [Parser.Tip tok])) =
[ast_of_dummy a tok]
| asts_of (Parser.Node ({const = a as "_idtdummy", ...}, [Parser.Tip tok])) =
[ast_of_dummy a tok]
| asts_of (Parser.Node ({const = "_idtypdummy", ...}, pts as [Parser.Tip tok, _, _])) =
[Ast.Appl (Ast.Constant "_constrain" :: ast_of_dummy "_idtdummy" tok :: maps asts_of pts)]
| asts_of (Parser.Node ({const = a, ...}, pts)) =
(report_literals a pts; [trans a (maps asts_of pts)])
| asts_of (Parser.Tip tok) = asts_of_token tok
and ast_of pt =
(case asts_of pt of
[ast] => ast
| asts => raise Ast.AST ("parsetree_to_ast: malformed parsetree", asts));
val ast = Exn.result ast_of parsetree;
in (! reports, ast) end;
(* ast_to_term *)
fun ast_to_term ctxt trf =
let
fun trans a args =
(case trf a of
NONE => Term.list_comb (Syntax.const a, args)
| SOME f => f ctxt args);
fun term_of (Ast.Constant a) = trans a []
| term_of (Ast.Variable x) = Lexicon.read_var x
| term_of (Ast.Appl (Ast.Constant a :: (asts as _ :: _))) =
trans a (map term_of asts)
| term_of (Ast.Appl (ast :: (asts as _ :: _))) =
Term.list_comb (term_of ast, map term_of asts)
| term_of (ast as Ast.Appl _) = raise Ast.AST ("ast_to_term: malformed ast", [ast]);
in term_of end;
(* decode_term -- transform parse tree into raw term *)
fun decode_const ctxt (c, ps) =
Proof_Context.check_const {proper = true, strict = false} ctxt (c, ps)
|>> dest_Const_name;
local
fun get_free ctxt x =
let
val fixed = Variable.lookup_fixed ctxt x;
val is_const = can (decode_const ctxt) (x, []) orelse Long_Name.is_qualified x;
val is_declared = is_some (Variable.def_type ctxt false (x, ~1));
in
if Variable.is_const ctxt x then NONE
else if is_some fixed then fixed
else if not is_const orelse is_declared then SOME x
else NONE
end;
in
fun decode_term ctxt =
let
val markup_free_cache = #apply (Symtab.unsynchronized_cache (markup_free ctxt));
val markup_const_cache = #apply (Symtab.unsynchronized_cache (markup_const ctxt));
fun decode (result as (_: Position.report_text list, Exn.Exn _)) = result
| decode (reports0, Exn.Res tm) =
let
val reports = Unsynchronized.ref reports0;
fun report ps = Position.store_reports reports ps;
val append_reports = Position.append_reports reports;
fun decode ps qs bs (Const ("_constrain", _) $ t $ typ) =
(case Term_Position.decode_position typ of
SOME (p, T) => Type.constraint T (decode (p :: ps) qs bs t)
| NONE => Type.constraint (decode_typ typ) (decode ps qs bs t))
| decode ps qs bs (Const ("_constrainAbs", _) $ t $ typ) =
(case Term_Position.decode_position typ of
SOME (q, T) => Type.constraint (T --> dummyT) (decode ps (q :: qs) bs t)
| NONE => Type.constraint (decode_typ typ --> dummyT) (decode ps qs bs t))
| decode _ qs bs (Abs (x, T, t)) =
let
val id = serial ();
val _ = report qs (markup_bound {def = true} qs) (x, id);
in Abs (x, T, decode [] [] ((qs, (x, id)) :: bs) t) end
| decode _ _ bs (t $ u) = decode [] [] bs t $ decode [] [] bs u
| decode ps _ _ (Const (a, T)) =
(case try Lexicon.unmark_fixed a of
SOME x => (report ps markup_free_cache x; Free (x, T))
| NONE =>
let
val c =
(case try Lexicon.unmark_const a of
SOME c => c
| NONE => #1 (decode_const ctxt (a, [])));
val _ = report ps markup_const_cache c;
in Const (c, T) end)
| decode ps _ _ (Free (a, T)) =
((Name.reject_internal (a, ps) handle ERROR msg =>
error (msg ^ Proof_Context.consts_completion_message ctxt (a, ps)));
(case get_free ctxt a of
SOME x => (report ps markup_free_cache x; Free (x, T))
| NONE =>
let
val (c, rs) = decode_const ctxt (a, ps);
val _ = append_reports rs;
in Const (c, T) end))
| decode ps _ _ (Var (xi, T)) = (report ps markup_var xi; Var (xi, T))
| decode ps _ bs (t as Bound i) =
(case try (nth bs) i of
SOME (qs, (x, id)) => (report ps (markup_bound {def = false} qs) (x, id); t)
| NONE => t);
val tm' = Exn.result (fn () => decode [] [] [] tm) ();
in (! reports, tm') end;
in decode end;
end;
(** parse **)
(* results *)
fun proper_results results = map_filter (fn (y, Exn.Res x) => SOME (y, x) | _ => NONE) results;
fun failed_results results = map_filter (fn (y, Exn.Exn e) => SOME (y, e) | _ => NONE) results;
fun report_result ctxt pos ambig_msgs results =
(case (proper_results results, failed_results results) of
([], (reports, exn) :: _) => (Context_Position.reports_text ctxt reports; Exn.reraise exn)
| ([(reports, x)], _) => (Context_Position.reports_text ctxt reports; x)
| _ =>
if null ambig_msgs then
error ("Parse error: ambiguous syntax" ^ Position.here pos)
else error (cat_lines ambig_msgs));
(* parse raw asts *)
fun parse_asts ctxt raw root (syms, pos) =
let
val syn = Proof_Context.syntax_of ctxt;
val ast_tr = Syntax.parse_ast_translation syn;
val toks = Syntax.tokenize syn raw syms;
val _ = Context_Position.reports ctxt (maps Lexicon.reports_of_token toks);
val pts = Syntax.parse syn root (filter Lexicon.is_proper toks)
handle ERROR msg =>
error (msg ^ Markup.markup_report (implode (map (Lexicon.reported_token_range ctxt) toks)));
val len = length pts;
val limit = Config.get ctxt Syntax.ambiguity_limit;
val ambig_msgs =
if len <= 1 then []
else
[cat_lines
(("Ambiguous input" ^ Position.here (Position.no_range_position pos) ^
" produces " ^ string_of_int len ^ " parse trees" ^
(if len <= limit then "" else " (" ^ string_of_int limit ^ " displayed)") ^ ":") ::
map (Pretty.string_of o Pretty.item o Parser.pretty_tree) (take limit pts))];
in (ambig_msgs, map (parsetree_to_ast ctxt ast_tr) pts) end;
fun parse_tree ctxt root input =
let
val syn = Proof_Context.syntax_of ctxt;
val tr = Syntax.parse_translation syn;
val parse_rules = Syntax.parse_rules syn;
val (ambig_msgs, asts) = parse_asts ctxt false root input;
val results =
(map o apsnd o Exn.maps_res)
(Ast.normalize ctxt parse_rules #> Exn.result (ast_to_term ctxt tr)) asts;
in (ambig_msgs, results) end;
(* parse logical entities *)
fun parse_failed ctxt pos msg kind =
cat_error msg ("Failed to parse " ^ kind ^
Markup.markup_report (Context_Position.reported_text ctxt pos (Markup.bad ()) ""));
fun parse_sort ctxt =
Syntax.parse_input ctxt Term_XML.Decode.sort Markup.language_sort
(fn (syms, pos) =>
parse_tree ctxt "sort" (syms, pos)
|> uncurry (report_result ctxt pos)
|> decode_sort
|> Type.minimize_sort (Proof_Context.tsig_of ctxt)
handle ERROR msg => parse_failed ctxt pos msg "sort");
fun parse_typ ctxt =
Syntax.parse_input ctxt Term_XML.Decode.typ Markup.language_type
(fn (syms, pos) =>
parse_tree ctxt "type" (syms, pos)
|> uncurry (report_result ctxt pos)
|> decode_typ
handle ERROR msg => parse_failed ctxt pos msg "type");
fun parse_term is_prop ctxt =
let
val (markup, kind, root, constrain) =
if is_prop
then (Markup.language_prop, "prop", "prop", Type.constraint propT)
else (Markup.language_term, "term", Config.get ctxt Syntax.root, I);
val decode = constrain o Term_XML.Decode.term (Proof_Context.consts_of ctxt);
in
Syntax.parse_input ctxt decode markup
(fn (syms, pos) =>
let
val (ambig_msgs, results) = parse_tree ctxt root (syms, pos) ||> map (decode_term ctxt);
val parsed_len = length (proper_results results);
val ambiguity_warning = Config.get ctxt Syntax.ambiguity_warning;
val limit = Config.get ctxt Syntax.ambiguity_limit;
(*brute-force disambiguation via type-inference*)
fun check t =
(Syntax.check_term (Proof_Context.allow_dummies ctxt) (constrain t); Exn.Res t)
handle exn as ERROR _ => Exn.Exn exn;
fun par_map xs = Par_List.map' {name = "Syntax_Phases.parse_term", sequential = false} xs;
val results' =
if parsed_len > 1 then (grouped 10 par_map o apsnd o Exn.maps_res) check results
else results;
val reports' = fst (hd results');
val errs = map snd (failed_results results');
val checked = map snd (proper_results results');
val checked_len = length checked;
val pretty_term = Syntax.pretty_term (Config.put Printer.show_brackets true ctxt);
in
if checked_len = 0 then
report_result ctxt pos []
[(reports', Exn.Exn (Exn.EXCEPTIONS (map ERROR ambig_msgs @ errs)))]
else if checked_len = 1 then
(if not (null ambig_msgs) andalso ambiguity_warning andalso
Context_Position.is_visible ctxt then
warning
(cat_lines (ambig_msgs @
["Fortunately, only one parse tree is well-formed and type-correct,\n\
\but you may still want to disambiguate your grammar or your input."]))
else (); report_result ctxt pos [] results')
else
report_result ctxt pos []
[(reports', Exn.Exn (ERROR (cat_lines (ambig_msgs @
(("Ambiguous input\n" ^ string_of_int checked_len ^ " terms are type correct" ^
(if checked_len <= limit then ""
else " (" ^ string_of_int limit ^ " displayed)") ^ ":") ::
map (Pretty.string_of o Pretty.item o single o pretty_term)
(take limit checked))))))]
end handle ERROR msg => parse_failed ctxt pos msg kind)
end;
(* parse_ast_pattern *)
fun parse_ast_pattern ctxt (root, str) =
let
val syn = Proof_Context.syntax_of ctxt;
val reports = Unsynchronized.ref ([]: Position.report_text list);
fun report ps = Position.store_reports reports ps;
val markup_cache = markup_entity_cache ctxt;
fun decode_const ps c = (report ps markup_cache c; Ast.Constant c);
fun decode_var ps x = (report ps (fn () => [Markup.name x Markup.free]) (); Ast.Variable x);
fun decode_appl ps asts = Ast.Appl (map (decode ps) asts)
and decode ps (Ast.Constant c) = decode_const ps c
| decode ps (Ast.Variable x) =
if Syntax.is_const syn x orelse Long_Name.is_qualified x
then decode_const ps x
else decode_var ps x
| decode ps (Ast.Appl (asts as (Ast.Constant c :: ast :: Ast.Variable x :: args))) =
if member (op =) Term_Position.markers c then
(case Term_Position.decode x of
SOME p => Ast.mk_appl (decode (p :: ps) ast) (map (decode ps) args)
| NONE => decode_appl ps asts)
else decode_appl ps asts
| decode ps (Ast.Appl asts) = decode_appl ps asts;
val source = Syntax.read_input str;
val pos = Input.pos_of source;
val syms = Input.source_explode source;
val ast =
parse_asts ctxt true root (syms, pos)
|> uncurry (report_result ctxt pos)
|> decode [];
val _ = Context_Position.reports_text ctxt (! reports);
in ast end;
(** encode parse trees **)
(* term_of_sort *)
fun term_of_sort S =
let
val class = Syntax.const o Lexicon.mark_class;
fun classes [c] = class c
| classes (c :: cs) = Syntax.const "_classes" $ class c $ classes cs;
in
if S = dummyS then Syntax.const "_dummy_sort"
else
(case S of
[] => Syntax.const "_topsort"
| [c] => class c
| cs => Syntax.const "_sort" $ classes cs)
end;
(* term_of_typ *)
fun term_of_typ ctxt ty =
let
val show_sorts = Config.get ctxt show_sorts orelse Config.get ctxt show_markup;
fun ofsort t raw_S =
if show_sorts then
let val S = #2 (Term_Position.decode_positionS raw_S)
in if S = dummyS then t else Syntax.const "_ofsort" $ t $ term_of_sort S end
else t;
fun term_of (Type (a, Ts)) =
Term.list_comb (Syntax.const (Lexicon.mark_type a), map term_of Ts)
| term_of (TFree (x, S)) =
if is_some (Term_Position.decode x) then Syntax.free x
else ofsort (Syntax.const "_tfree" $ Syntax.free x) S
| term_of (TVar (xi, S)) = ofsort (Syntax.const "_tvar" $ Syntax.var xi) S;
in term_of ty end;
(* simple_ast_of *)
fun simple_ast_of ctxt =
let
val tune_var = if Config.get ctxt show_question_marks then I else unprefix "?";
fun ast_of (Const (c, _)) = Ast.Constant c
| ast_of (Free (x, _)) = Ast.Variable x
| ast_of (Var (xi, _)) = Ast.Variable (tune_var (Term.string_of_vname xi))
| ast_of (t as _ $ _) =
let val (f, args) = strip_comb t
in Ast.mk_appl (ast_of f) (map ast_of args) end
| ast_of (Bound i) = Ast.Appl [Ast.Constant "_loose", Ast.Variable ("B." ^ string_of_int i)]
| ast_of (Abs _) = raise Fail "simple_ast_of: Abs";
in ast_of end;
(* sort_to_ast and typ_to_ast *)
fun ast_of_termT ctxt trf tm =
let
val ctxt' = Config.put show_sorts false ctxt;
fun ast_of (t as Const ("_tfree", _) $ Free _) = simple_ast_of ctxt t
| ast_of (t as Const ("_tvar", _) $ Var _) = simple_ast_of ctxt t
| ast_of (Const (a, _)) = trans a []
| ast_of (t as _ $ _) =
(case strip_comb t of
(Const (a, _), args) => trans a args
| (f, args) => Ast.Appl (map ast_of (f :: args)))
| ast_of t = simple_ast_of ctxt t
and trans a args = ast_of (trf a ctxt' dummyT args)
handle Match => Ast.mk_appl (Ast.Constant a) (map ast_of args);
in ast_of tm end;
fun sort_to_ast ctxt trf S = ast_of_termT ctxt trf (term_of_sort S);
fun typ_to_ast ctxt trf T = ast_of_termT ctxt trf (term_of_typ ctxt T);
(* term_to_ast *)
local
fun mark_aprop tm =
let
fun aprop t = Syntax.const "_aprop" $ t;
fun is_prop Ts t =
Type_Annotation.clean (Type_Annotation.fastype_of Ts t) = propT
handle TERM _ => false;
fun is_term (Const ("Pure.term", _) $ _) = true
| is_term _ = false;
fun mark _ (t as Const _) = t
| mark Ts (t as Const ("_bound", _) $ u) = if is_prop Ts u then aprop t else t
| mark Ts (t as Free _) = if is_prop Ts t then aprop t else t
| mark Ts (t as Var _) = if is_prop Ts t then aprop t else t
| mark Ts (t as Bound _) = if is_prop Ts t then aprop t else t
| mark Ts (Abs (x, T, t)) = Abs (x, T, mark (T :: Ts) t)
| mark Ts (t as t1 $ (t2 as Const ("Pure.type", Type ("itself", [T])))) =
if is_prop Ts t andalso not (is_term t) then Const ("_type_prop", T) $ mark Ts t1
else mark Ts t1 $ mark Ts t2
| mark Ts (t as t1 $ t2) =
(if is_Const (Term.head_of t) orelse not (is_prop Ts t) then I else aprop)
(mark Ts t1 $ mark Ts t2);
in mark [] tm end;
fun prune_types tm =
let
fun regard t t' seen =
if Type_Annotation.is_omitted (Type_Annotation.fastype_of [] t) then (t, seen)
else if member (op aconv) seen t then (t', seen)
else (t, t :: seen);
fun prune (t as Const _, seen) = (t, seen)
| prune (t as Free (x, T), seen) = regard t (Free (x, Type_Annotation.ignore_type T)) seen
| prune (t as Var (xi, T), seen) = regard t (Var (xi, Type_Annotation.ignore_type T)) seen
| prune (t as Bound _, seen) = (t, seen)
| prune (Abs (x, T, t), seen) =
let val (t', seen') = prune (t, seen);
in (Abs (x, T, t'), seen') end
| prune (t1 $ t2, seen) =
let
val (t1', seen') = prune (t1, seen);
val (t2', seen'') = prune (t2, seen');
in (t1' $ t2', seen'') end;
in #1 (prune (tm, [])) end;
fun mark_atoms ctxt tm =
let
val {structs, fixes} = Syntax_Trans.get_idents ctxt;
val show_structs = Config.get ctxt show_structs;
fun mark ((t as Const (c, _)) $ u) =
if member (op =) Pure_Thy.token_markers c
then t $ u else mark t $ mark u
| mark (t $ u) = mark t $ mark u
| mark (Abs (x, T, t)) = Abs (x, T, mark t)
| mark (t as Const (c, T)) =
if Proof_Context.is_syntax_const ctxt c then t
else Const (Lexicon.mark_const c, T)
| mark (t as Free (x, T)) =
let val i = find_index (fn s => s = x) structs + 1 in
if i = 0 andalso member (op =) fixes x then
Const (Lexicon.mark_fixed x, T)
else if i = 1 andalso not show_structs then
Syntax.const "_struct" $ Syntax.const "_indexdefault"
else Syntax.const "_free" $ t
end
| mark (t as Var (xi, T)) =
if xi = Auto_Bind.dddot then Const ("_DDDOT", T)
else Syntax.const "_var" $ t
| mark a = a;
in mark tm end;
in
fun term_to_ast ctxt trf =
let
val show_types = Config.get ctxt show_types orelse Config.get ctxt show_sorts;
val show_markup = Config.get ctxt show_markup;
val show_consts_markup = Config.get ctxt show_consts_markup;
val show_const_types = show_markup andalso show_consts_markup;
val show_var_types = show_types orelse show_markup;
val clean_var_types = show_markup andalso not show_types;
fun constrain clean T ast =
let val U = Type_Annotation.print clean T in
if U = dummyT then ast
else Ast.Appl [Ast.Constant "_constrain", ast, ast_of_termT ctxt trf (term_of_typ ctxt U)]
end;
fun main tm =
(case strip_comb tm of
(t as Abs _, ts) => Ast.mk_appl (main (Syntax_Trans.abs_tr' ctxt t)) (map main ts)
| ((c as Const ("_free", _)), Free (x, T) :: ts) =>
Ast.mk_appl (variable (c $ Syntax.free x) T) (map main ts)
| ((c as Const ("_var", _)), Var (xi, T) :: ts) =>
Ast.mk_appl (variable (c $ Syntax.var xi) T) (map main ts)
| ((c as Const ("_bound", B)), Free (x, T) :: ts) =>
let
val X =
if show_markup andalso not show_types orelse B <> dummyT then T
else dummyT;
in Ast.mk_appl (variable (c $ Syntax.free x) X) (map main ts) end
| (Const ("_idtdummy", T), ts) =>
Ast.mk_appl (variable (Syntax.const "_idtdummy") T) (map main ts)
| (Const (c, T), ts) => constant c T ts
| (t, ts) => Ast.mk_appl (simple_ast_of ctxt t) (map main ts))
and constant a T args =
(case SOME (trf a ctxt (Type_Annotation.smash T) args) handle Match => NONE of
SOME t => main t
| NONE =>
let val c = Ast.Constant a |> show_const_types ? constrain {clean = true} T
in Ast.mk_appl c (map main args) end)
and variable v T =
simple_ast_of ctxt v
|> show_var_types ? constrain {clean = clean_var_types} T;
in
mark_aprop
#> show_types ? prune_types
#> Variable.revert_bounds ctxt
#> mark_atoms ctxt
#> main
end;
end;
(** unparse **)
local
fun extern_fixed ctxt x =
if Name.is_skolem x then Variable.revert_fixed ctxt x else x;
fun extern_cache ctxt =
Symtab.unsynchronized_cache (fn c =>
(case Syntax.get_consts (Proof_Context.syntax_of ctxt) c of
[b] => b
| bs =>
(case filter Lexicon.is_marked bs of
[] => c
| [b] => b
| _ => error ("Multiple logical entities for " ^ quote c ^ ": " ^ commas_quote bs)))
|> Lexicon.unmark
{case_class = Proof_Context.extern_class ctxt,
case_type = Proof_Context.extern_type ctxt,
case_const = Proof_Context.extern_const ctxt,
case_fixed = extern_fixed ctxt,
case_default = I})
|> #apply;
val var_or_skolem_cache =
Symtab.unsynchronized_cache (fn s =>
(case Lexicon.read_variable s of
SOME (x, i) =>
(case try Name.dest_skolem x of
SOME x' => (Markup.skolem, Term.string_of_vname (x', i))
| NONE => (Markup.var, s))
| NONE => (Markup.var, s)))
|> #apply;
val typing_elem = YXML.output_markup_elem Markup.typing;
val sorting_elem = YXML.output_markup_elem Markup.sorting;
fun unparse_t t_to_ast pretty_flags language_markup ctxt t =
let
val show_markup = Config.get ctxt show_markup;
val show_sorts = Config.get ctxt show_sorts;
val show_types = Config.get ctxt show_types orelse show_sorts;
val syn = Proof_Context.syntax_of ctxt;
val prtabs = Syntax.print_mode_tabs syn;
val trf = Syntax.print_ast_translation syn;
val markup = markup_entity_cache ctxt;
val extern = extern_cache ctxt;
val free_or_skolem_cache =
#apply (Symtab.unsynchronized_cache (fn x => (markup_free ctxt x, extern_fixed ctxt x)));
val cache1 = Unsynchronized.ref (Ast.Table.empty: Markup.output Pretty.block Ast.Table.table);
val cache2 = Unsynchronized.ref (Ast.Table.empty: Markup.output Pretty.block Ast.Table.table);
fun token_trans "_tfree" x = SOME (Pretty.mark_str (Markup.tfree, x))
| token_trans "_tvar" x = SOME (Pretty.mark_str (Markup.tvar, x))
| token_trans "_free" x = SOME (Pretty.marks_str (free_or_skolem_cache x))
| token_trans "_bound" x = SOME (Pretty.mark_str (Markup.bound, x))
| token_trans "_loose" x = SOME (Pretty.mark_str (Markup.bad (), x))
| token_trans "_var" x = SOME (Pretty.mark_str (var_or_skolem_cache x))
| token_trans "_numeral" x = SOME (Pretty.mark_str (Markup.numeral, x))
| token_trans "_inner_string" x = SOME (Pretty.mark_str (Markup.inner_string, x))
| token_trans _ _ = NONE;
fun markup_trans a [Ast.Variable x] = token_trans a x
| markup_trans "_constrain" [t, ty] = constrain_trans t ty
| markup_trans "_idtyp" [t, ty] = constrain_trans t ty
| markup_trans "_ofsort" [ty, s] = ofsort_trans ty s
| markup_trans _ _ = NONE
and constrain_trans t ty =
if show_markup andalso not show_types
then SOME (markup_ast true t ty) else NONE
and ofsort_trans ty s =
if show_markup andalso not show_sorts
then SOME (markup_ast false ty s) else NONE
and pretty_ast flags m =
Printer.pretty flags ctxt prtabs
{trf = trf, constrain_block = constrain_block true, markup_trans = markup_trans,
markup = markup, extern = extern}
#> Pretty.markup m
and markup_ast is_typing a A =
Pretty.make_block (constrain_block is_typing A)
[pretty_ast (if is_typing then pretty_flags else Printer.type_mode_flags) Markup.empty a]
and constrain_block is_typing A =
let val cache = if is_typing then cache1 else cache2 in
(case Ast.Table.lookup (! cache) A of
SOME block => block
| NONE =>
let
val ((bg1, bg2), en) = if is_typing then typing_elem else sorting_elem;
val B = Pretty.symbolic_output (pretty_ast Printer.type_mode_flags Markup.empty A);
val bg = implode (bg1 :: Bytes.contents B @ [bg2]);
val block = {markup = (bg, en), open_block = false, consistent = false, indent = 0};
in Unsynchronized.change cache (Ast.Table.update (A, block)); block end)
end;
in
t_to_ast ctxt (Syntax.print_translation syn) t
|> Ast.normalize ctxt (Syntax.print_rules syn)
|> pretty_ast pretty_flags language_markup
end;
in
val unparse_sort = unparse_t sort_to_ast Printer.type_mode_flags (Markup.language_sort false);
val unparse_typ = unparse_t typ_to_ast Printer.type_mode_flags (Markup.language_type false);
fun unparse_term ctxt =
let
val thy = Proof_Context.theory_of ctxt;
val pretty_flags = {type_mode = false, curried = not (Pure_Thy.old_appl_syntax thy)};
in unparse_t term_to_ast pretty_flags (Markup.language_term false) ctxt end;
end;
(** translations **)
(* type propositions *)
fun type_prop_tr' ctxt T [Const ("\<^const>Pure.sort_constraint", _)] =
Syntax.const "_sort_constraint" $ term_of_typ (Config.put show_sorts true ctxt) T
| type_prop_tr' ctxt T [t] =
Syntax.const "_ofclass" $ term_of_typ ctxt T $ t
| type_prop_tr' _ T ts = raise TYPE ("type_prop_tr'", [T], ts);
(* type reflection *)
fun type_tr' ctxt (Type ("itself", [T])) ts =
Term.list_comb (Syntax.const "_TYPE" $ term_of_typ ctxt T, ts)
| type_tr' _ _ _ = raise Match;
(* type constraints *)
fun type_constraint_tr' ctxt (Type ("fun", [T, _])) (t :: ts) =
Term.list_comb (Syntax.const "_constrain" $ t $ term_of_typ ctxt T, ts)
| type_constraint_tr' _ _ _ = raise Match;
(* authentic syntax *)
fun const_ast_tr intern ctxt asts =
(case asts of
[Ast.Appl [Ast.Constant "_constrain", Ast.Variable c, T as Ast.Variable p]] =>
let
val pos = the_default Position.none (Term_Position.decode p);
val (c', _) = decode_const ctxt (c, [pos]);
val d = if intern then Lexicon.mark_const c' else c;
in Ast.Appl [Ast.Constant "_constrain", Ast.Constant d, T] end
| _ => raise Ast.AST ("const_ast_tr", asts));
(* setup translations *)
val _ = Theory.setup
(Sign.parse_ast_translation
[("_context_const", const_ast_tr true),
("_context_xconst", const_ast_tr false)] #>
Sign.typed_print_translation
[("_type_prop", type_prop_tr'),
("\<^const>Pure.type", type_tr'),
("_type_constraint_", type_constraint_tr')]);
(** check/uncheck **)
(* context-sensitive (un)checking *)
type key = int * bool;
structure Checks = Generic_Data
(
type 'a check = 'a list -> Proof.context -> ('a list * Proof.context) option;
type T =
((key * ((string * typ check) * stamp) list) list *
(key * ((string * term check) * stamp) list) list);
val empty = ([], []);
fun merge ((typ_checks1, term_checks1), (typ_checks2, term_checks2)) : T =
(AList.join (op =) (K (Library.merge (eq_snd (op =)))) (typ_checks1, typ_checks2),
AList.join (op =) (K (Library.merge (eq_snd (op =)))) (term_checks1, term_checks2));
);
fun print_checks ctxt =
let
fun split_checks checks =
List.partition (fn ((_, un), _) => not un) checks
|> apply2 (map (fn ((i, _), fs) => (i, map (fst o fst) fs))
#> sort (int_ord o apply2 fst));
fun pretty_checks kind checks =
checks |> map (fn (i, names) => Pretty.block
[Pretty.str (kind ^ " (stage " ^ signed_string_of_int i ^ "):"),
Pretty.brk 1, Pretty.strs names]);
val (typs, terms) = Checks.get (Context.Proof ctxt);
val (typ_checks, typ_unchecks) = split_checks typs;
val (term_checks, term_unchecks) = split_checks terms;
in
pretty_checks "typ_checks" typ_checks @
pretty_checks "term_checks" term_checks @
pretty_checks "typ_unchecks" typ_unchecks @
pretty_checks "term_unchecks" term_unchecks
end |> Pretty.writeln_chunks;
local
fun context_check which (key: key) name f =
Checks.map (which (AList.map_default op = (key, []) (cons ((name, f), stamp ()))));
fun simple_check eq f xs ctxt =
let val xs' = f ctxt xs
in if eq_list eq (xs, xs') then NONE else SOME (xs', ctxt) end;
in
fun typ_check' stage = context_check apfst (stage, false);
fun term_check' stage = context_check apsnd (stage, false);
fun typ_uncheck' stage = context_check apfst (stage, true);
fun term_uncheck' stage = context_check apsnd (stage, true);
fun typ_check key name f = typ_check' key name (simple_check (op =) f);
fun term_check key name f = term_check' key name (simple_check (op aconv) f);
fun typ_uncheck key name f = typ_uncheck' key name (simple_check (op =) f);
fun term_uncheck key name f = term_uncheck' key name (simple_check (op aconv) f);
end;
local
fun check_stage fs = perhaps_loop (perhaps_apply (map uncurry fs));
fun check_all fs = perhaps_apply (map check_stage fs);
fun check which uncheck ctxt0 xs0 =
let
val funs = which (Checks.get (Context.Proof ctxt0))
|> map_filter (fn ((i, u), fs) => if uncheck = u then SOME (i, map (snd o fst) fs) else NONE)
|> Library.sort (int_ord o apply2 fst) |> map snd
|> not uncheck ? map rev;
in #1 (perhaps (check_all funs) (xs0, ctxt0)) end;
val apply_typ_check = check fst false;
val apply_term_check = check snd false;
val apply_typ_uncheck = check fst true;
val apply_term_uncheck = check snd true;
in
fun check_typs ctxt raw_tys =
let
val (sorting_report, tys) = Proof_Context.prepare_sortsT ctxt raw_tys;
val _ = if Context_Position.reports_enabled ctxt then Output.report sorting_report else ();
in
tys
|> apply_typ_check ctxt
|> Term_Sharing.typs (Proof_Context.theory_of ctxt)
end;
fun check_terms ctxt raw_ts =
let
val (sorting_report, raw_ts') = Proof_Context.prepare_sorts ctxt raw_ts;
val (ts, ps) = Type_Infer_Context.prepare_positions ctxt raw_ts';
val tys = map (Logic.mk_type o snd) ps;
val (ts', tys') = ts @ tys
|> apply_term_check ctxt
|> chop (length ts);
val typing_report =
fold2 (fn (pos, _) => fn ty =>
if Position.is_reported pos then
cons (Position.reported_text pos Markup.typing
(Syntax.string_of_typ ctxt (Logic.dest_type ty)))
else I) ps tys' [];
val _ =
if Context_Position.reports_enabled ctxt
then Output.report (sorting_report @ typing_report) else ();
in Term_Sharing.terms (Proof_Context.theory_of ctxt) ts' end;
fun check_props ctxt = map (Type.constraint propT) #> check_terms ctxt;
val uncheck_typs = apply_typ_uncheck;
val uncheck_terms = apply_term_uncheck;
end;
(* install operations *)
val _ =
Theory.setup
(Syntax.install_operations
{parse_sort = parse_sort,
parse_typ = parse_typ,
parse_term = parse_term false,
parse_prop = parse_term true,
unparse_sort = unparse_sort,
unparse_typ = unparse_typ,
unparse_term = unparse_term,
check_typs = check_typs,
check_terms = check_terms,
check_props = check_props,
uncheck_typs = uncheck_typs,
uncheck_terms = uncheck_terms});
end;
(* standard phases *)
val _ = Context.>>
(Syntax_Phases.typ_check 0 "standard" Proof_Context.standard_typ_check #>
Syntax_Phases.term_check 0 "standard"
(fn ctxt => Type_Infer_Context.infer_types ctxt #> map (Proof_Context.expand_abbrevs ctxt)) #>
Syntax_Phases.term_check 100 "standard_finish" Proof_Context.standard_term_check_finish #>
Syntax_Phases.term_uncheck 0 "standard" Proof_Context.standard_term_uncheck);