obsolete (cf. ProofGeneral/proof_general_emacs.ML);
(*  Title:      HOL/IOA/meta_theory/Asig.thy
    ID:         $Id$
    Author:     Olaf Müller, Tobias Nipkow & Konrad Slind
*)
header {* Action signatures *}
theory Asig
imports Main
begin
types
  'a signature = "('a set * 'a set * 'a set)"
consts
  actions       :: "'action signature => 'action set"
  inputs        :: "'action signature => 'action set"
  outputs       :: "'action signature => 'action set"
  internals     :: "'action signature => 'action set"
  externals     :: "'action signature => 'action set"
  locals        :: "'action signature => 'action set"
  is_asig       ::"'action signature => bool"
  mk_ext_asig   ::"'action signature => 'action signature"
defs
asig_inputs_def:    "inputs == fst"
asig_outputs_def:   "outputs == (fst o snd)"
asig_internals_def: "internals == (snd o snd)"
actions_def:
   "actions(asig) == (inputs(asig) Un outputs(asig) Un internals(asig))"
externals_def:
   "externals(asig) == (inputs(asig) Un outputs(asig))"
locals_def:
   "locals asig == ((internals asig) Un (outputs asig))"
is_asig_def:
  "is_asig(triple) ==
     ((inputs(triple) Int outputs(triple) = {})    &
      (outputs(triple) Int internals(triple) = {}) &
      (inputs(triple) Int internals(triple) = {}))"
mk_ext_asig_def:
  "mk_ext_asig(triple) == (inputs(triple), outputs(triple), {})"
lemmas asig_projections = asig_inputs_def asig_outputs_def asig_internals_def
lemma asig_triple_proj: 
 "(outputs    (a,b,c) = b)   &  
  (inputs     (a,b,c) = a) &  
  (internals  (a,b,c) = c)"
  apply (simp add: asig_projections)
  done
lemma int_and_ext_is_act: "[| a~:internals(S) ;a~:externals(S)|] ==> a~:actions(S)"
apply (simp add: externals_def actions_def)
done
lemma ext_is_act: "[|a:externals(S)|] ==> a:actions(S)"
apply (simp add: externals_def actions_def)
done
lemma int_is_act: "[|a:internals S|] ==> a:actions S"
apply (simp add: asig_internals_def actions_def)
done
lemma inp_is_act: "[|a:inputs S|] ==> a:actions S"
apply (simp add: asig_inputs_def actions_def)
done
lemma out_is_act: "[|a:outputs S|] ==> a:actions S"
apply (simp add: asig_outputs_def actions_def)
done
lemma ext_and_act: "(x: actions S & x : externals S) = (x: externals S)"
apply (fast intro!: ext_is_act)
done
lemma not_ext_is_int: "[|is_asig S;x: actions S|] ==> (x~:externals S) = (x: internals S)"
apply (simp add: actions_def is_asig_def externals_def)
apply blast
done
lemma not_ext_is_int_or_not_act: "is_asig S ==> (x~:externals S) = (x: internals S | x~:actions S)"
apply (simp add: actions_def is_asig_def externals_def)
apply blast
done
lemma int_is_not_ext: 
 "[| is_asig (S); x:internals S |] ==> x~:externals S"
apply (unfold externals_def actions_def is_asig_def)
apply simp
apply blast
done
end