(* Title: HOL/Meson.thy
Author: Lawrence C. Paulson, Cambridge University Computer Laboratory
Author: Tobias Nipkow, TU Muenchen
Author: Jasmin Blanchette, TU Muenchen
Copyright 2001 University of Cambridge
*)
header {* MESON Proof Procedure (Model Elimination) *}
theory Meson
imports Datatype
uses ("Tools/Meson/meson.ML")
("Tools/Meson/meson_clausify.ML")
begin
section {* Negation Normal Form *}
text {* de Morgan laws *}
lemma meson_not_conjD: "~(P&Q) ==> ~P | ~Q"
and meson_not_disjD: "~(P|Q) ==> ~P & ~Q"
and meson_not_notD: "~~P ==> P"
and meson_not_allD: "!!P. ~(\<forall>x. P(x)) ==> \<exists>x. ~P(x)"
and meson_not_exD: "!!P. ~(\<exists>x. P(x)) ==> \<forall>x. ~P(x)"
by fast+
text {* Removal of @{text "-->"} and @{text "<->"} (positive and
negative occurrences) *}
lemma meson_imp_to_disjD: "P-->Q ==> ~P | Q"
and meson_not_impD: "~(P-->Q) ==> P & ~Q"
and meson_iff_to_disjD: "P=Q ==> (~P | Q) & (~Q | P)"
and meson_not_iffD: "~(P=Q) ==> (P | Q) & (~P | ~Q)"
-- {* Much more efficient than @{prop "(P & ~Q) | (Q & ~P)"} for computing CNF *}
and meson_not_refl_disj_D: "x ~= x | P ==> P"
by fast+
section {* Pulling out the existential quantifiers *}
text {* Conjunction *}
lemma meson_conj_exD1: "!!P Q. (\<exists>x. P(x)) & Q ==> \<exists>x. P(x) & Q"
and meson_conj_exD2: "!!P Q. P & (\<exists>x. Q(x)) ==> \<exists>x. P & Q(x)"
by fast+
text {* Disjunction *}
lemma meson_disj_exD: "!!P Q. (\<exists>x. P(x)) | (\<exists>x. Q(x)) ==> \<exists>x. P(x) | Q(x)"
-- {* DO NOT USE with forall-Skolemization: makes fewer schematic variables!! *}
-- {* With ex-Skolemization, makes fewer Skolem constants *}
and meson_disj_exD1: "!!P Q. (\<exists>x. P(x)) | Q ==> \<exists>x. P(x) | Q"
and meson_disj_exD2: "!!P Q. P | (\<exists>x. Q(x)) ==> \<exists>x. P | Q(x)"
by fast+
lemma meson_disj_assoc: "(P|Q)|R ==> P|(Q|R)"
and meson_disj_comm: "P|Q ==> Q|P"
and meson_disj_FalseD1: "False|P ==> P"
and meson_disj_FalseD2: "P|False ==> P"
by fast+
text{* Generation of contrapositives *}
text{*Inserts negated disjunct after removing the negation; P is a literal.
Model elimination requires assuming the negation of every attempted subgoal,
hence the negated disjuncts.*}
lemma make_neg_rule: "~P|Q ==> ((~P==>P) ==> Q)"
by blast
text{*Version for Plaisted's "Postive refinement" of the Meson procedure*}
lemma make_refined_neg_rule: "~P|Q ==> (P ==> Q)"
by blast
text{*@{term P} should be a literal*}
lemma make_pos_rule: "P|Q ==> ((P==>~P) ==> Q)"
by blast
text{*Versions of @{text make_neg_rule} and @{text make_pos_rule} that don't
insert new assumptions, for ordinary resolution.*}
lemmas make_neg_rule' = make_refined_neg_rule
lemma make_pos_rule': "[|P|Q; ~P|] ==> Q"
by blast
text{* Generation of a goal clause -- put away the final literal *}
lemma make_neg_goal: "~P ==> ((~P==>P) ==> False)"
by blast
lemma make_pos_goal: "P ==> ((P==>~P) ==> False)"
by blast
section {* Lemmas for Forward Proof *}
text{*There is a similarity to congruence rules*}
(*NOTE: could handle conjunctions (faster?) by
nf(th RS conjunct2) RS (nf(th RS conjunct1) RS conjI) *)
lemma conj_forward: "[| P'&Q'; P' ==> P; Q' ==> Q |] ==> P&Q"
by blast
lemma disj_forward: "[| P'|Q'; P' ==> P; Q' ==> Q |] ==> P|Q"
by blast
(*Version of @{text disj_forward} for removal of duplicate literals*)
lemma disj_forward2:
"[| P'|Q'; P' ==> P; [| Q'; P==>False |] ==> Q |] ==> P|Q"
apply blast
done
lemma all_forward: "[| \<forall>x. P'(x); !!x. P'(x) ==> P(x) |] ==> \<forall>x. P(x)"
by blast
lemma ex_forward: "[| \<exists>x. P'(x); !!x. P'(x) ==> P(x) |] ==> \<exists>x. P(x)"
by blast
section {* Clausification helper *}
lemma TruepropI: "P \<equiv> Q \<Longrightarrow> Trueprop P \<equiv> Trueprop Q"
by simp
text{* Combinator translation helpers *}
definition COMBI :: "'a \<Rightarrow> 'a" where
[no_atp]: "COMBI P = P"
definition COMBK :: "'a \<Rightarrow> 'b \<Rightarrow> 'a" where
[no_atp]: "COMBK P Q = P"
definition COMBB :: "('b => 'c) \<Rightarrow> ('a => 'b) \<Rightarrow> 'a \<Rightarrow> 'c" where [no_atp]:
"COMBB P Q R = P (Q R)"
definition COMBC :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'c" where
[no_atp]: "COMBC P Q R = P R Q"
definition COMBS :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c" where
[no_atp]: "COMBS P Q R = P R (Q R)"
lemma abs_S [no_atp]: "\<lambda>x. (f x) (g x) \<equiv> COMBS f g"
apply (rule eq_reflection)
apply (rule ext)
apply (simp add: COMBS_def)
done
lemma abs_I [no_atp]: "\<lambda>x. x \<equiv> COMBI"
apply (rule eq_reflection)
apply (rule ext)
apply (simp add: COMBI_def)
done
lemma abs_K [no_atp]: "\<lambda>x. y \<equiv> COMBK y"
apply (rule eq_reflection)
apply (rule ext)
apply (simp add: COMBK_def)
done
lemma abs_B [no_atp]: "\<lambda>x. a (g x) \<equiv> COMBB a g"
apply (rule eq_reflection)
apply (rule ext)
apply (simp add: COMBB_def)
done
lemma abs_C [no_atp]: "\<lambda>x. (f x) b \<equiv> COMBC f b"
apply (rule eq_reflection)
apply (rule ext)
apply (simp add: COMBC_def)
done
section {* Skolemization helpers *}
definition skolem :: "'a \<Rightarrow> 'a" where
[no_atp]: "skolem = (\<lambda>x. x)"
lemma skolem_COMBK_iff: "P \<longleftrightarrow> skolem (COMBK P (i\<Colon>nat))"
unfolding skolem_def COMBK_def by (rule refl)
lemmas skolem_COMBK_I = iffD1 [OF skolem_COMBK_iff]
lemmas skolem_COMBK_D = iffD2 [OF skolem_COMBK_iff]
section {* Meson package *}
ML {*
structure Meson_Choices = Named_Thms
(
val name = "meson_choice"
val description = "choice axioms for MESON's (and Metis's) skolemizer"
)
*}
use "Tools/Meson/meson.ML"
use "Tools/Meson/meson_clausify.ML"
setup {*
Meson_Choices.setup
#> Meson.setup
#> Meson_Clausify.setup
*}
end