doc-src/TutorialI/Inductive/document/Even.tex
author paulson
Mon, 12 Jan 2004 16:51:45 +0100
changeset 14353 79f9fbef9106
parent 12328 7c4ec77a8715
child 14470 1ffe42cfaefe
permissions -rw-r--r--
Added lemmas to Ring_and_Field with slightly modified simplification rules Deleted some little-used integer theorems, replacing them by the generic ones in Ring_and_Field Consolidated integer powers

%
\begin{isabellebody}%
\def\isabellecontext{Even}%
\isanewline
\isacommand{theory}\ Even\ {\isacharequal}\ Main{\isacharcolon}\isanewline
\isanewline
\isanewline
\isamarkupfalse%
\isacommand{consts}\ even\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}nat\ set{\isachardoublequote}\isanewline
\isamarkupfalse%
\isacommand{inductive}\ even\isanewline
\isakeyword{intros}\isanewline
zero{\isacharbrackleft}intro{\isacharbang}{\isacharbrackright}{\isacharcolon}\ {\isachardoublequote}{\isadigit{0}}\ {\isasymin}\ even{\isachardoublequote}\isanewline
step{\isacharbrackleft}intro{\isacharbang}{\isacharbrackright}{\isacharcolon}\ {\isachardoublequote}n\ {\isasymin}\ even\ {\isasymLongrightarrow}\ {\isacharparenleft}Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}{\isacharparenright}\ {\isasymin}\ even{\isachardoublequote}\isamarkupfalse%
%
\begin{isamarkuptext}%
An inductive definition consists of introduction rules. 

\begin{isabelle}%
\ \ \ \ \ n\ {\isasymin}\ even\ {\isasymLongrightarrow}\ Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}\ {\isasymin}\ even%
\end{isabelle}
\rulename{even.step}

\begin{isabelle}%
\ \ \ \ \ {\isasymlbrakk}xa\ {\isasymin}\ even{\isacharsemicolon}\ P\ {\isadigit{0}}{\isacharsemicolon}\ {\isasymAnd}n{\isachardot}\ {\isasymlbrakk}n\ {\isasymin}\ even{\isacharsemicolon}\ P\ n{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ {\isacharparenleft}Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}{\isacharparenright}{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ xa%
\end{isabelle}
\rulename{even.induct}

Attributes can be given to the introduction rules.  Here both rules are
specified as \isa{intro!}

Our first lemma states that numbers of the form $2\times k$ are even.%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{lemma}\ two{\isacharunderscore}times{\isacharunderscore}even{\isacharbrackleft}intro{\isacharbang}{\isacharbrackright}{\isacharcolon}\ {\isachardoublequote}{\isadigit{2}}{\isacharasterisk}k\ {\isasymin}\ even{\isachardoublequote}\isanewline
\isamarkupfalse%
\isacommand{apply}\ {\isacharparenleft}induct{\isacharunderscore}tac\ k{\isacharparenright}\isamarkupfalse%
%
\begin{isamarkuptxt}%
The first step is induction on the natural number \isa{k}, which leaves
two subgoals:
\begin{isabelle}%
\ {\isadigit{1}}{\isachardot}\ {\isadigit{2}}\ {\isacharasterisk}\ {\isadigit{0}}\ {\isasymin}\ even\isanewline
\ {\isadigit{2}}{\isachardot}\ {\isasymAnd}n{\isachardot}\ {\isadigit{2}}\ {\isacharasterisk}\ n\ {\isasymin}\ even\ {\isasymLongrightarrow}\ {\isadigit{2}}\ {\isacharasterisk}\ Suc\ n\ {\isasymin}\ even%
\end{isabelle}
Here \isa{auto} simplifies both subgoals so that they match the introduction
rules, which then are applied automatically.%
\end{isamarkuptxt}%
\ \isamarkuptrue%
\isacommand{apply}\ auto\isanewline
\isamarkupfalse%
\isacommand{done}\isamarkupfalse%
%
\begin{isamarkuptext}%
Our goal is to prove the equivalence between the traditional definition
of even (using the divides relation) and our inductive definition.  Half of
this equivalence is trivial using the lemma just proved, whose \isa{intro!}
attribute ensures it will be applied automatically.%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{lemma}\ dvd{\isacharunderscore}imp{\isacharunderscore}even{\isacharcolon}\ {\isachardoublequote}{\isadigit{2}}\ dvd\ n\ {\isasymLongrightarrow}\ n\ {\isasymin}\ even{\isachardoublequote}\isanewline
\isamarkupfalse%
\isacommand{by}\ {\isacharparenleft}auto\ simp\ add{\isacharcolon}\ dvd{\isacharunderscore}def{\isacharparenright}\isamarkupfalse%
%
\begin{isamarkuptext}%
our first rule induction!%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{lemma}\ even{\isacharunderscore}imp{\isacharunderscore}dvd{\isacharcolon}\ {\isachardoublequote}n\ {\isasymin}\ even\ {\isasymLongrightarrow}\ {\isadigit{2}}\ dvd\ n{\isachardoublequote}\isanewline
\isamarkupfalse%
\isacommand{apply}\ {\isacharparenleft}erule\ even{\isachardot}induct{\isacharparenright}\isamarkupfalse%
%
\begin{isamarkuptxt}%
\begin{isabelle}%
\ {\isadigit{1}}{\isachardot}\ {\isadigit{2}}\ dvd\ {\isadigit{0}}\isanewline
\ {\isadigit{2}}{\isachardot}\ {\isasymAnd}n{\isachardot}\ {\isasymlbrakk}n\ {\isasymin}\ even{\isacharsemicolon}\ {\isadigit{2}}\ dvd\ n{\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isadigit{2}}\ dvd\ Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}%
\end{isabelle}%
\end{isamarkuptxt}%
\isamarkuptrue%
\isacommand{apply}\ {\isacharparenleft}simp{\isacharunderscore}all\ add{\isacharcolon}\ dvd{\isacharunderscore}def{\isacharparenright}\isamarkupfalse%
%
\begin{isamarkuptxt}%
\begin{isabelle}%
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}n{\isachardot}\ {\isasymlbrakk}n\ {\isasymin}\ even{\isacharsemicolon}\ {\isasymexists}k{\isachardot}\ n\ {\isacharequal}\ {\isadigit{2}}\ {\isacharasterisk}\ k{\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isasymexists}k{\isachardot}\ Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}\ {\isacharequal}\ {\isadigit{2}}\ {\isacharasterisk}\ k%
\end{isabelle}%
\end{isamarkuptxt}%
\isamarkuptrue%
\isacommand{apply}\ clarify\isamarkupfalse%
%
\begin{isamarkuptxt}%
\begin{isabelle}%
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}n\ k{\isachardot}\ {\isadigit{2}}\ {\isacharasterisk}\ k\ {\isasymin}\ even\ {\isasymLongrightarrow}\ {\isasymexists}ka{\isachardot}\ Suc\ {\isacharparenleft}Suc\ {\isacharparenleft}{\isadigit{2}}\ {\isacharasterisk}\ k{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ {\isadigit{2}}\ {\isacharasterisk}\ ka%
\end{isabelle}%
\end{isamarkuptxt}%
\isamarkuptrue%
\isacommand{apply}\ {\isacharparenleft}rule{\isacharunderscore}tac\ x\ {\isacharequal}\ {\isachardoublequote}Suc\ k{\isachardoublequote}\ \isakeyword{in}\ exI{\isacharcomma}\ simp{\isacharparenright}\isanewline
\isamarkupfalse%
\isacommand{done}\isamarkupfalse%
%
\begin{isamarkuptext}%
no iff-attribute because we don't always want to use it%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{theorem}\ even{\isacharunderscore}iff{\isacharunderscore}dvd{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}n\ {\isasymin}\ even{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}{\isadigit{2}}\ dvd\ n{\isacharparenright}{\isachardoublequote}\isanewline
\isamarkupfalse%
\isacommand{by}\ {\isacharparenleft}blast\ intro{\isacharcolon}\ dvd{\isacharunderscore}imp{\isacharunderscore}even\ even{\isacharunderscore}imp{\isacharunderscore}dvd{\isacharparenright}\isamarkupfalse%
%
\begin{isamarkuptext}%
this result ISN'T inductive...%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{lemma}\ Suc{\isacharunderscore}Suc{\isacharunderscore}even{\isacharunderscore}imp{\isacharunderscore}even{\isacharcolon}\ {\isachardoublequote}Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}\ {\isasymin}\ even\ {\isasymLongrightarrow}\ n\ {\isasymin}\ even{\isachardoublequote}\isanewline
\isamarkupfalse%
\isacommand{apply}\ {\isacharparenleft}erule\ even{\isachardot}induct{\isacharparenright}\isamarkupfalse%
%
\begin{isamarkuptxt}%
\begin{isabelle}%
\ {\isadigit{1}}{\isachardot}\ n\ {\isasymin}\ even\isanewline
\ {\isadigit{2}}{\isachardot}\ {\isasymAnd}na{\isachardot}\ {\isasymlbrakk}na\ {\isasymin}\ even{\isacharsemicolon}\ n\ {\isasymin}\ even{\isasymrbrakk}\ {\isasymLongrightarrow}\ n\ {\isasymin}\ even%
\end{isabelle}%
\end{isamarkuptxt}%
\isamarkuptrue%
\isacommand{oops}\isamarkupfalse%
%
\begin{isamarkuptext}%
...so we need an inductive lemma...%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{lemma}\ even{\isacharunderscore}imp{\isacharunderscore}even{\isacharunderscore}minus{\isacharunderscore}{\isadigit{2}}{\isacharcolon}\ {\isachardoublequote}n\ {\isasymin}\ even\ {\isasymLongrightarrow}\ n\ {\isacharminus}\ {\isadigit{2}}\ {\isasymin}\ even{\isachardoublequote}\isanewline
\isamarkupfalse%
\isacommand{apply}\ {\isacharparenleft}erule\ even{\isachardot}induct{\isacharparenright}\isamarkupfalse%
%
\begin{isamarkuptxt}%
\begin{isabelle}%
\ {\isadigit{1}}{\isachardot}\ {\isadigit{0}}\ {\isacharminus}\ {\isadigit{2}}\ {\isasymin}\ even\isanewline
\ {\isadigit{2}}{\isachardot}\ {\isasymAnd}n{\isachardot}\ {\isasymlbrakk}n\ {\isasymin}\ even{\isacharsemicolon}\ n\ {\isacharminus}\ {\isadigit{2}}\ {\isasymin}\ even{\isasymrbrakk}\ {\isasymLongrightarrow}\ Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}\ {\isacharminus}\ {\isadigit{2}}\ {\isasymin}\ even%
\end{isabelle}%
\end{isamarkuptxt}%
\isamarkuptrue%
\isacommand{apply}\ auto\isanewline
\isamarkupfalse%
\isacommand{done}\isamarkupfalse%
%
\begin{isamarkuptext}%
...and prove it in a separate step%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{lemma}\ Suc{\isacharunderscore}Suc{\isacharunderscore}even{\isacharunderscore}imp{\isacharunderscore}even{\isacharcolon}\ {\isachardoublequote}Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}\ {\isasymin}\ even\ {\isasymLongrightarrow}\ n\ {\isasymin}\ even{\isachardoublequote}\isanewline
\isamarkupfalse%
\isacommand{by}\ {\isacharparenleft}drule\ even{\isacharunderscore}imp{\isacharunderscore}even{\isacharunderscore}minus{\isacharunderscore}{\isadigit{2}}{\isacharcomma}\ simp{\isacharparenright}\isanewline
\isanewline
\isanewline
\isamarkupfalse%
\isacommand{lemma}\ {\isacharbrackleft}iff{\isacharbrackright}{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}{\isacharparenleft}Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}{\isacharparenright}\ {\isasymin}\ even{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}n\ {\isasymin}\ even{\isacharparenright}{\isachardoublequote}\isanewline
\isamarkupfalse%
\isacommand{by}\ {\isacharparenleft}blast\ dest{\isacharcolon}\ Suc{\isacharunderscore}Suc{\isacharunderscore}even{\isacharunderscore}imp{\isacharunderscore}even{\isacharparenright}\isanewline
\isanewline
\isamarkupfalse%
\isacommand{end}\isanewline
\isanewline
\isamarkupfalse%
\end{isabellebody}%
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "root"
%%% End: