src/Pure/thm.ML
author Fabian Huch <huch@in.tum.de>
Tue, 07 Jun 2022 17:20:25 +0200
changeset 75521 7a289e681454
parent 74645 30eba7f9a8e9
child 77730 4a174bea55e2
permissions -rw-r--r--
provide hugo-0.88.1 for darwin and linux;

(*  Title:      Pure/thm.ML
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Author:     Makarius

The very core of Isabelle's Meta Logic: certified types and terms,
derivations, theorems, inference rules (including lifting and
resolution), oracles.
*)

infix 0 RS RSN;

signature BASIC_THM =
sig
  type ctyp
  type cterm
  exception CTERM of string * cterm list
  type thm
  type conv = cterm -> thm
  exception THM of string * int * thm list
  val RSN: thm * (int * thm) -> thm
  val RS: thm * thm -> thm
end;

signature THM =
sig
  include BASIC_THM
  (*certified types*)
  val typ_of: ctyp -> typ
  val global_ctyp_of: theory -> typ -> ctyp
  val ctyp_of: Proof.context -> typ -> ctyp
  val dest_ctyp: ctyp -> ctyp list
  val dest_ctypN: int -> ctyp -> ctyp
  val dest_ctyp0: ctyp -> ctyp
  val dest_ctyp1: ctyp -> ctyp
  val make_ctyp: ctyp -> ctyp list -> ctyp
  (*certified terms*)
  val term_of: cterm -> term
  val typ_of_cterm: cterm -> typ
  val ctyp_of_cterm: cterm -> ctyp
  val maxidx_of_cterm: cterm -> int
  val global_cterm_of: theory -> term -> cterm
  val cterm_of: Proof.context -> term -> cterm
  val renamed_term: term -> cterm -> cterm
  val fast_term_ord: cterm ord
  val term_ord: cterm ord
  val dest_comb: cterm -> cterm * cterm
  val dest_fun: cterm -> cterm
  val dest_arg: cterm -> cterm
  val dest_fun2: cterm -> cterm
  val dest_arg1: cterm -> cterm
  val dest_abs_fresh: string -> cterm -> cterm * cterm
  val dest_abs_global: cterm -> cterm * cterm
  val rename_tvar: indexname -> ctyp -> ctyp
  val var: indexname * ctyp -> cterm
  val apply: cterm -> cterm -> cterm
  val lambda_name: string * cterm -> cterm -> cterm
  val lambda: cterm -> cterm -> cterm
  val adjust_maxidx_cterm: int -> cterm -> cterm
  val incr_indexes_cterm: int -> cterm -> cterm
  val match: cterm * cterm -> ctyp TVars.table * cterm Vars.table
  val first_order_match: cterm * cterm -> ctyp TVars.table * cterm Vars.table
  (*theorems*)
  val fold_terms: {hyps: bool} -> (term -> 'a -> 'a) -> thm -> 'a -> 'a
  val fold_atomic_ctyps: {hyps: bool} -> (typ -> bool) -> (ctyp -> 'a -> 'a) -> thm -> 'a -> 'a
  val fold_atomic_cterms: {hyps: bool} -> (term -> bool) -> (cterm -> 'a -> 'a) -> thm -> 'a -> 'a
  val terms_of_tpairs: (term * term) list -> term list
  val full_prop_of: thm -> term
  val theory_id: thm -> Context.theory_id
  val theory_name: thm -> string
  val maxidx_of: thm -> int
  val maxidx_thm: thm -> int -> int
  val shyps_of: thm -> sort Ord_List.T
  val hyps_of: thm -> term list
  val prop_of: thm -> term
  val tpairs_of: thm -> (term * term) list
  val concl_of: thm -> term
  val prems_of: thm -> term list
  val nprems_of: thm -> int
  val no_prems: thm -> bool
  val major_prem_of: thm -> term
  val cprop_of: thm -> cterm
  val cprem_of: thm -> int -> cterm
  val cconcl_of: thm -> cterm
  val cprems_of: thm -> cterm list
  val chyps_of: thm -> cterm list
  val thm_ord: thm ord
  exception CONTEXT of string * ctyp list * cterm list * thm list * Context.generic option
  val theory_of_cterm: cterm -> theory
  val theory_of_thm: thm -> theory
  val trim_context_ctyp: ctyp -> ctyp
  val trim_context_cterm: cterm -> cterm
  val transfer_ctyp: theory -> ctyp -> ctyp
  val transfer_cterm: theory -> cterm -> cterm
  val transfer: theory -> thm -> thm
  val transfer': Proof.context -> thm -> thm
  val transfer'': Context.generic -> thm -> thm
  val join_transfer: theory -> thm -> thm
  val join_transfer_context: Proof.context * thm -> Proof.context * thm
  val renamed_prop: term -> thm -> thm
  val weaken: cterm -> thm -> thm
  val weaken_sorts: sort list -> cterm -> cterm
  val proof_bodies_of: thm list -> proof_body list
  val proof_body_of: thm -> proof_body
  val proof_of: thm -> proof
  val reconstruct_proof_of: thm -> Proofterm.proof
  val consolidate: thm list -> unit
  val expose_proofs: theory -> thm list -> unit
  val expose_proof: theory -> thm -> unit
  val future: thm future -> cterm -> thm
  val thm_deps: thm -> Proofterm.thm Ord_List.T
  val extra_shyps: thm -> sort list
  val strip_shyps: thm -> thm
  val derivation_closed: thm -> bool
  val derivation_name: thm -> string
  val derivation_id: thm -> Proofterm.thm_id option
  val raw_derivation_name: thm -> string
  val expand_name: thm -> Proofterm.thm_header -> string option
  val name_derivation: string * Position.T -> thm -> thm
  val close_derivation: Position.T -> thm -> thm
  val trim_context: thm -> thm
  val axiom: theory -> string -> thm
  val all_axioms_of: theory -> (string * thm) list
  val get_tags: thm -> Properties.T
  val map_tags: (Properties.T -> Properties.T) -> thm -> thm
  val norm_proof: thm -> thm
  val adjust_maxidx_thm: int -> thm -> thm
  (*type classes*)
  val the_classrel: theory -> class * class -> thm
  val the_arity: theory -> string * sort list * class -> thm
  val classrel_proof: theory -> class * class -> proof
  val arity_proof: theory -> string * sort list * class -> proof
  (*oracles*)
  val add_oracle: binding * ('a -> cterm) -> theory -> (string * ('a -> thm)) * theory
  val oracle_space: theory -> Name_Space.T
  val pretty_oracle: Proof.context -> string -> Pretty.T
  val extern_oracles: bool -> Proof.context -> (Markup.T * xstring) list
  val check_oracle: Proof.context -> xstring * Position.T -> string
  (*inference rules*)
  val assume: cterm -> thm
  val implies_intr: cterm -> thm -> thm
  val implies_elim: thm -> thm -> thm
  val forall_intr: cterm -> thm -> thm
  val forall_elim: cterm -> thm -> thm
  val reflexive: cterm -> thm
  val symmetric: thm -> thm
  val transitive: thm -> thm -> thm
  val beta_conversion: bool -> conv
  val eta_conversion: conv
  val eta_long_conversion: conv
  val abstract_rule: string -> cterm -> thm -> thm
  val combination: thm -> thm -> thm
  val equal_intr: thm -> thm -> thm
  val equal_elim: thm -> thm -> thm
  val solve_constraints: thm -> thm
  val flexflex_rule: Proof.context option -> thm -> thm Seq.seq
  val generalize: Names.set * Names.set -> int -> thm -> thm
  val generalize_cterm: Names.set * Names.set -> int -> cterm -> cterm
  val generalize_ctyp: Names.set -> int -> ctyp -> ctyp
  val instantiate: ctyp TVars.table * cterm Vars.table -> thm -> thm
  val instantiate_beta: ctyp TVars.table * cterm Vars.table -> thm -> thm
  val instantiate_cterm: ctyp TVars.table * cterm Vars.table -> cterm -> cterm
  val instantiate_beta_cterm: ctyp TVars.table * cterm Vars.table -> cterm -> cterm
  val trivial: cterm -> thm
  val of_class: ctyp * class -> thm
  val unconstrainT: thm -> thm
  val varifyT_global': TFrees.set -> thm -> ((string * sort) * indexname) list * thm
  val varifyT_global: thm -> thm
  val legacy_freezeT: thm -> thm
  val plain_prop_of: thm -> term
  val dest_state: thm * int -> (term * term) list * term list * term * term
  val lift_rule: cterm -> thm -> thm
  val incr_indexes: int -> thm -> thm
  val assumption: Proof.context option -> int -> thm -> thm Seq.seq
  val eq_assumption: int -> thm -> thm
  val rotate_rule: int -> int -> thm -> thm
  val permute_prems: int -> int -> thm -> thm
  val bicompose: Proof.context option -> {flatten: bool, match: bool, incremented: bool} ->
    bool * thm * int -> int -> thm -> thm Seq.seq
  val biresolution: Proof.context option -> bool -> (bool * thm) list -> int -> thm -> thm Seq.seq
  val thynames_of_arity: theory -> string * class -> string list
  val add_classrel: thm -> theory -> theory
  val add_arity: thm -> theory -> theory
end;

structure Thm: THM =
struct

(*** Certified terms and types ***)

(** certified types **)

datatype ctyp = Ctyp of {cert: Context.certificate, T: typ, maxidx: int, sorts: sort Ord_List.T};

fun typ_of (Ctyp {T, ...}) = T;

fun global_ctyp_of thy raw_T =
  let
    val T = Sign.certify_typ thy raw_T;
    val maxidx = Term.maxidx_of_typ T;
    val sorts = Sorts.insert_typ T [];
  in Ctyp {cert = Context.Certificate thy, T = T, maxidx = maxidx, sorts = sorts} end;

val ctyp_of = global_ctyp_of o Proof_Context.theory_of;

fun dest_ctyp (Ctyp {cert, T = Type (_, Ts), maxidx, sorts}) =
      map (fn T => Ctyp {cert = cert, T = T, maxidx = maxidx, sorts = sorts}) Ts
  | dest_ctyp cT = raise TYPE ("dest_ctyp", [typ_of cT], []);

fun dest_ctypN n (Ctyp {cert, T, maxidx, sorts}) =
  let fun err () = raise TYPE ("dest_ctypN", [T], []) in
    (case T of
      Type (_, Ts) =>
        Ctyp {cert = cert, T = nth Ts n handle General.Subscript => err (),
          maxidx = maxidx, sorts = sorts}
    | _ => err ())
  end;

val dest_ctyp0 = dest_ctypN 0;
val dest_ctyp1 = dest_ctypN 1;

fun join_certificate_ctyp (Ctyp {cert, ...}) cert0 = Context.join_certificate (cert0, cert);
fun union_sorts_ctyp (Ctyp {sorts, ...}) sorts0 = Sorts.union sorts0 sorts;
fun maxidx_ctyp (Ctyp {maxidx, ...}) maxidx0 = Int.max (maxidx0, maxidx);

fun make_ctyp (Ctyp {cert, T, maxidx = _, sorts = _}) cargs =
  let
    val As = map typ_of cargs;
    fun err () = raise TYPE ("make_ctyp", T :: As, []);
  in
    (case T of
      Type (a, args) =>
        Ctyp {
          cert = fold join_certificate_ctyp cargs cert,
          maxidx = fold maxidx_ctyp cargs ~1,
          sorts = fold union_sorts_ctyp cargs [],
          T = if length args = length cargs then Type (a, As) else err ()}
    | _ => err ())
  end;



(** certified terms **)

(*certified terms with checked typ, maxidx, and sorts*)
datatype cterm =
  Cterm of {cert: Context.certificate, t: term, T: typ, maxidx: int, sorts: sort Ord_List.T};

exception CTERM of string * cterm list;

fun term_of (Cterm {t, ...}) = t;

fun typ_of_cterm (Cterm {T, ...}) = T;

fun ctyp_of_cterm (Cterm {cert, T, maxidx, sorts, ...}) =
  Ctyp {cert = cert, T = T, maxidx = maxidx, sorts = sorts};

fun maxidx_of_cterm (Cterm {maxidx, ...}) = maxidx;

fun global_cterm_of thy tm =
  let
    val (t, T, maxidx) = Sign.certify_term thy tm;
    val sorts = Sorts.insert_term t [];
  in Cterm {cert = Context.Certificate thy, t = t, T = T, maxidx = maxidx, sorts = sorts} end;

val cterm_of = global_cterm_of o Proof_Context.theory_of;

fun join_certificate0 (Cterm {cert = cert1, ...}, Cterm {cert = cert2, ...}) =
  Context.join_certificate (cert1, cert2);

fun renamed_term t' (Cterm {cert, t, T, maxidx, sorts}) =
  if t aconv t' then Cterm {cert = cert, t = t', T = T, maxidx = maxidx, sorts = sorts}
  else raise TERM ("renamed_term: terms disagree", [t, t']);

val fast_term_ord = Term_Ord.fast_term_ord o apply2 term_of;
val term_ord = Term_Ord.term_ord o apply2 term_of;


(* destructors *)

fun dest_comb (Cterm {t = c $ a, T, cert, maxidx, sorts}) =
      let val A = Term.argument_type_of c 0 in
        (Cterm {t = c, T = A --> T, cert = cert, maxidx = maxidx, sorts = sorts},
         Cterm {t = a, T = A, cert = cert, maxidx = maxidx, sorts = sorts})
      end
  | dest_comb ct = raise CTERM ("dest_comb", [ct]);

fun dest_fun (Cterm {t = c $ _, T, cert, maxidx, sorts}) =
      let val A = Term.argument_type_of c 0
      in Cterm {t = c, T = A --> T, cert = cert, maxidx = maxidx, sorts = sorts} end
  | dest_fun ct = raise CTERM ("dest_fun", [ct]);

fun dest_arg (Cterm {t = c $ a, T = _, cert, maxidx, sorts}) =
      let val A = Term.argument_type_of c 0
      in Cterm {t = a, T = A, cert = cert, maxidx = maxidx, sorts = sorts} end
  | dest_arg ct = raise CTERM ("dest_arg", [ct]);


fun dest_fun2 (Cterm {t = c $ _ $ _, T, cert, maxidx, sorts}) =
      let
        val A = Term.argument_type_of c 0;
        val B = Term.argument_type_of c 1;
      in Cterm {t = c, T = A --> B --> T, cert = cert, maxidx = maxidx, sorts = sorts} end
  | dest_fun2 ct = raise CTERM ("dest_fun2", [ct]);

fun dest_arg1 (Cterm {t = c $ a $ _, T = _, cert, maxidx, sorts}) =
      let val A = Term.argument_type_of c 0
      in Cterm {t = a, T = A, cert = cert, maxidx = maxidx, sorts = sorts} end
  | dest_arg1 ct = raise CTERM ("dest_arg1", [ct]);

fun gen_dest_abs dest ct =
  (case ct of
    Cterm {t = t as Abs _, T = Type ("fun", [_, U]), cert, maxidx, sorts} =>
      let
        val ((x', T), t') = dest t;
        val v = Cterm {t = Free (x', T), T = T, cert = cert, maxidx = maxidx, sorts = sorts};
        val body = Cterm {t = t', T = U, cert = cert, maxidx = maxidx, sorts = sorts};
      in (v, body) end
  | _ => raise CTERM ("dest_abs", [ct]));

val dest_abs_fresh = gen_dest_abs o Term.dest_abs_fresh;
val dest_abs_global = gen_dest_abs Term.dest_abs_global;


(* constructors *)

fun rename_tvar (a, i) (Ctyp {cert, T, maxidx, sorts}) =
  let
    val S =
      (case T of
        TFree (_, S) => S
      | TVar (_, S) => S
      | _ => raise TYPE ("rename_tvar: no variable", [T], []));
    val _ = if i < 0 then raise TYPE ("rename_tvar: bad index", [TVar ((a, i), S)], []) else ();
  in Ctyp {cert = cert, T = TVar ((a, i), S), maxidx = Int.max (i, maxidx), sorts = sorts} end;

fun var ((x, i), Ctyp {cert, T, maxidx, sorts}) =
  if i < 0 then raise TERM ("var: bad index", [Var ((x, i), T)])
  else Cterm {cert = cert, t = Var ((x, i), T), T = T, maxidx = Int.max (i, maxidx), sorts = sorts};

fun apply
  (cf as Cterm {t = f, T = Type ("fun", [dty, rty]), maxidx = maxidx1, sorts = sorts1, ...})
  (cx as Cterm {t = x, T, maxidx = maxidx2, sorts = sorts2, ...}) =
    if T = dty then
      Cterm {cert = join_certificate0 (cf, cx),
        t = f $ x,
        T = rty,
        maxidx = Int.max (maxidx1, maxidx2),
        sorts = Sorts.union sorts1 sorts2}
      else raise CTERM ("apply: types don't agree", [cf, cx])
  | apply cf cx = raise CTERM ("apply: first arg is not a function", [cf, cx]);

fun lambda_name
  (x, ct1 as Cterm {t = t1, T = T1, maxidx = maxidx1, sorts = sorts1, ...})
  (ct2 as Cterm {t = t2, T = T2, maxidx = maxidx2, sorts = sorts2, ...}) =
    let val t = Term.lambda_name (x, t1) t2 in
      Cterm {cert = join_certificate0 (ct1, ct2),
        t = t, T = T1 --> T2,
        maxidx = Int.max (maxidx1, maxidx2),
        sorts = Sorts.union sorts1 sorts2}
    end;

fun lambda t u = lambda_name ("", t) u;


(* indexes *)

fun adjust_maxidx_cterm i (ct as Cterm {cert, t, T, maxidx, sorts}) =
  if maxidx = i then ct
  else if maxidx < i then
    Cterm {maxidx = i, cert = cert, t = t, T = T, sorts = sorts}
  else
    Cterm {maxidx = Int.max (maxidx_of_term t, i), cert = cert, t = t, T = T, sorts = sorts};

fun incr_indexes_cterm i (ct as Cterm {cert, t, T, maxidx, sorts}) =
  if i < 0 then raise CTERM ("negative increment", [ct])
  else if i = 0 then ct
  else Cterm {cert = cert, t = Logic.incr_indexes ([], [], i) t,
    T = Logic.incr_tvar i T, maxidx = maxidx + i, sorts = sorts};



(*** Derivations and Theorems ***)

(* sort constraints *)

type constraint = {theory: theory, typ: typ, sort: sort};

local

val constraint_ord : constraint ord =
  Context.theory_id_ord o apply2 (Context.theory_id o #theory)
  ||| Term_Ord.typ_ord o apply2 #typ
  ||| Term_Ord.sort_ord o apply2 #sort;

val smash_atyps =
  map_atyps (fn TVar (_, S) => Term.aT S | TFree (_, S) => Term.aT S | T => T);

in

val union_constraints = Ord_List.union constraint_ord;

fun insert_constraints thy (T, S) =
  let
    val ignored =
      S = [] orelse
        (case T of
          TFree (_, S') => S = S'
        | TVar (_, S') => S = S'
        | _ => false);
  in
    if ignored then I
    else Ord_List.insert constraint_ord {theory = thy, typ = smash_atyps T, sort = S}
  end;

fun insert_constraints_env thy env =
  let
    val tyenv = Envir.type_env env;
    fun insert ([], _) = I
      | insert (S, T) = insert_constraints thy (Envir.norm_type tyenv T, S);
  in tyenv |> Vartab.fold (insert o #2) end;

end;


(* datatype thm *)

datatype thm = Thm of
 deriv *                        (*derivation*)
 {cert: Context.certificate,    (*background theory certificate*)
  tags: Properties.T,           (*additional annotations/comments*)
  maxidx: int,                  (*maximum index of any Var or TVar*)
  constraints: constraint Ord_List.T,  (*implicit proof obligations for sort constraints*)
  shyps: sort Ord_List.T,       (*sort hypotheses*)
  hyps: term Ord_List.T,        (*hypotheses*)
  tpairs: (term * term) list,   (*flex-flex pairs*)
  prop: term}                   (*conclusion*)
and deriv = Deriv of
 {promises: (serial * thm future) Ord_List.T,
  body: Proofterm.proof_body};

type conv = cterm -> thm;

(*errors involving theorems*)
exception THM of string * int * thm list;

fun rep_thm (Thm (_, args)) = args;

fun fold_terms h f (Thm (_, {tpairs, prop, hyps, ...})) =
  fold (fn (t, u) => f t #> f u) tpairs #> f prop #> #hyps h ? fold f hyps;

fun fold_atomic_ctyps h g f (th as Thm (_, {cert, maxidx, shyps, ...})) =
  let fun ctyp T = Ctyp {cert = cert, T = T, maxidx = maxidx, sorts = shyps}
  in (fold_terms h o fold_types o fold_atyps) (fn T => if g T then f (ctyp T) else I) th end;

fun fold_atomic_cterms h g f (th as Thm (_, {cert, maxidx, shyps, ...})) =
  let
    fun cterm t T = Cterm {cert = cert, t = t, T = T, maxidx = maxidx, sorts = shyps};
    fun apply t T = if g t then f (cterm t T) else I;
  in
    (fold_terms h o fold_aterms)
      (fn t as Const (_, T) => apply t T
        | t as Free (_, T) => apply t T
        | t as Var (_, T) => apply t T
        | _ => I) th
  end;


fun terms_of_tpairs tpairs = fold_rev (fn (t, u) => cons t o cons u) tpairs [];

fun eq_tpairs ((t, u), (t', u')) = t aconv t' andalso u aconv u';
fun union_tpairs ts us = Library.merge eq_tpairs (ts, us);
val maxidx_tpairs = fold (fn (t, u) => Term.maxidx_term t #> Term.maxidx_term u);

fun attach_tpairs tpairs prop =
  Logic.list_implies (map Logic.mk_equals tpairs, prop);

fun full_prop_of (Thm (_, {tpairs, prop, ...})) = attach_tpairs tpairs prop;


val union_hyps = Ord_List.union Term_Ord.fast_term_ord;
val insert_hyps = Ord_List.insert Term_Ord.fast_term_ord;
val remove_hyps = Ord_List.remove Term_Ord.fast_term_ord;

fun join_certificate1 (Cterm {cert = cert1, ...}, Thm (_, {cert = cert2, ...})) =
  Context.join_certificate (cert1, cert2);

fun join_certificate2 (Thm (_, {cert = cert1, ...}), Thm (_, {cert = cert2, ...})) =
  Context.join_certificate (cert1, cert2);


(* basic components *)

val cert_of = #cert o rep_thm;
val theory_id = Context.certificate_theory_id o cert_of;
val theory_name = Context.theory_id_name o theory_id;

val maxidx_of = #maxidx o rep_thm;
fun maxidx_thm th i = Int.max (maxidx_of th, i);
val shyps_of = #shyps o rep_thm;
val hyps_of = #hyps o rep_thm;
val prop_of = #prop o rep_thm;
val tpairs_of = #tpairs o rep_thm;

val concl_of = Logic.strip_imp_concl o prop_of;
val prems_of = Logic.strip_imp_prems o prop_of;
val nprems_of = Logic.count_prems o prop_of;
val no_prems = Logic.no_prems o prop_of;

fun major_prem_of th =
  (case prems_of th of
    prem :: _ => Logic.strip_assums_concl prem
  | [] => raise THM ("major_prem_of: rule with no premises", 0, [th]));

fun cprop_of (Thm (_, {cert, maxidx, shyps, prop, ...})) =
  Cterm {cert = cert, maxidx = maxidx, T = propT, t = prop, sorts = shyps};

fun cprem_of (th as Thm (_, {cert, maxidx, shyps, prop, ...})) i =
  Cterm {cert = cert, maxidx = maxidx, T = propT, sorts = shyps,
    t = Logic.nth_prem (i, prop) handle TERM _ => raise THM ("cprem_of", i, [th])};

fun cconcl_of (th as Thm (_, {cert, maxidx, shyps, ...})) =
  Cterm {cert = cert, maxidx = maxidx, T = propT, sorts = shyps, t = concl_of th};

fun cprems_of (th as Thm (_, {cert, maxidx, shyps, ...})) =
  map (fn t => Cterm {cert = cert, maxidx = maxidx, T = propT, sorts = shyps, t = t})
    (prems_of th);

fun chyps_of (Thm (_, {cert, shyps, hyps, ...})) =
  map (fn t => Cterm {cert = cert, maxidx = ~1, T = propT, sorts = shyps, t = t}) hyps;


(* thm order: ignores theory context! *)

val thm_ord =
  pointer_eq_ord
  (Term_Ord.fast_term_ord o apply2 prop_of
    ||| list_ord (prod_ord Term_Ord.fast_term_ord Term_Ord.fast_term_ord) o apply2 tpairs_of
    ||| list_ord Term_Ord.fast_term_ord o apply2 hyps_of
    ||| list_ord Term_Ord.sort_ord o apply2 shyps_of);


(* implicit theory context *)

exception CONTEXT of string * ctyp list * cterm list * thm list * Context.generic option;

fun theory_of_cterm (ct as Cterm {cert, ...}) =
  Context.certificate_theory cert
    handle ERROR msg => raise CONTEXT (msg, [], [ct], [], NONE);

fun theory_of_thm th =
  Context.certificate_theory (cert_of th)
    handle ERROR msg => raise CONTEXT (msg, [], [], [th], NONE);

fun trim_context_ctyp cT =
  (case cT of
    Ctyp {cert = Context.Certificate_Id _, ...} => cT
  | Ctyp {cert = Context.Certificate thy, T, maxidx, sorts} =>
      Ctyp {cert = Context.Certificate_Id (Context.theory_id thy),
        T = T, maxidx = maxidx, sorts = sorts});

fun trim_context_cterm ct =
  (case ct of
    Cterm {cert = Context.Certificate_Id _, ...} => ct
  | Cterm {cert = Context.Certificate thy, t, T, maxidx, sorts} =>
      Cterm {cert = Context.Certificate_Id (Context.theory_id thy),
        t = t, T = T, maxidx = maxidx, sorts = sorts});

fun trim_context_thm th =
  (case th of
    Thm (_, {constraints = _ :: _, ...}) =>
      raise THM ("trim_context: pending sort constraints", 0, [th])
  | Thm (_, {cert = Context.Certificate_Id _, ...}) => th
  | Thm (der,
      {cert = Context.Certificate thy, tags, maxidx, constraints = [], shyps, hyps,
        tpairs, prop}) =>
      Thm (der,
       {cert = Context.Certificate_Id (Context.theory_id thy),
        tags = tags, maxidx = maxidx, constraints = [], shyps = shyps, hyps = hyps,
        tpairs = tpairs, prop = prop}));

fun transfer_ctyp thy' cT =
  let
    val Ctyp {cert, T, maxidx, sorts} = cT;
    val _ =
      Context.subthy_id (Context.certificate_theory_id cert, Context.theory_id thy') orelse
        raise CONTEXT ("Cannot transfer: not a super theory", [cT], [], [],
          SOME (Context.Theory thy'));
    val cert' = Context.join_certificate (Context.Certificate thy', cert);
  in
    if Context.eq_certificate (cert, cert') then cT
    else Ctyp {cert = cert', T = T, maxidx = maxidx, sorts = sorts}
  end;

fun transfer_cterm thy' ct =
  let
    val Cterm {cert, t, T, maxidx, sorts} = ct;
    val _ =
      Context.subthy_id (Context.certificate_theory_id cert, Context.theory_id thy') orelse
        raise CONTEXT ("Cannot transfer: not a super theory", [], [ct], [],
          SOME (Context.Theory thy'));
    val cert' = Context.join_certificate (Context.Certificate thy', cert);
  in
    if Context.eq_certificate (cert, cert') then ct
    else Cterm {cert = cert', t = t, T = T, maxidx = maxidx, sorts = sorts}
  end;

fun transfer thy' th =
  let
    val Thm (der, {cert, tags, maxidx, constraints, shyps, hyps, tpairs, prop}) = th;
    val _ =
      Context.subthy_id (Context.certificate_theory_id cert, Context.theory_id thy') orelse
        raise CONTEXT ("Cannot transfer: not a super theory", [], [], [th],
          SOME (Context.Theory thy'));
    val cert' = Context.join_certificate (Context.Certificate thy', cert);
  in
    if Context.eq_certificate (cert, cert') then th
    else
      Thm (der,
       {cert = cert',
        tags = tags,
        maxidx = maxidx,
        constraints = constraints,
        shyps = shyps,
        hyps = hyps,
        tpairs = tpairs,
        prop = prop})
  end;

val transfer' = transfer o Proof_Context.theory_of;
val transfer'' = transfer o Context.theory_of;

fun join_transfer thy th =
  (Context.subthy_id (theory_id th, Context.theory_id thy) ? transfer thy) th;

fun join_transfer_context (ctxt, th) =
  if Context.subthy_id (theory_id th, Context.theory_id (Proof_Context.theory_of ctxt))
  then (ctxt, transfer' ctxt th)
  else (Context.raw_transfer (theory_of_thm th) ctxt, th);


(* matching *)

local

fun gen_match match
    (ct1 as Cterm {t = t1, sorts = sorts1, ...},
     ct2 as Cterm {t = t2, sorts = sorts2, maxidx = maxidx2, ...}) =
  let
    val cert = join_certificate0 (ct1, ct2);
    val thy = Context.certificate_theory cert
      handle ERROR msg => raise CONTEXT (msg, [], [ct1, ct2], [], NONE);
    val (Tinsts, tinsts) = match thy (t1, t2) (Vartab.empty, Vartab.empty);
    val sorts = Sorts.union sorts1 sorts2;
    fun mk_cTinst ((a, i), (S, T)) =
      (((a, i), S), Ctyp {T = T, cert = cert, maxidx = maxidx2, sorts = sorts});
    fun mk_ctinst ((x, i), (U, t)) =
      let val T = Envir.subst_type Tinsts U in
        (((x, i), T), Cterm {t = t, T = T, cert = cert, maxidx = maxidx2, sorts = sorts})
      end;
  in
    (TVars.build (Vartab.fold (TVars.add o mk_cTinst) Tinsts),
     Vars.build (Vartab.fold (Vars.add o mk_ctinst) tinsts))
  end;

in

val match = gen_match Pattern.match;
val first_order_match = gen_match Pattern.first_order_match;

end;


(*implicit alpha-conversion*)
fun renamed_prop prop' (Thm (der, {cert, tags, maxidx, constraints, shyps, hyps, tpairs, prop})) =
  if prop aconv prop' then
    Thm (der, {cert = cert, tags = tags, maxidx = maxidx, constraints = constraints, shyps = shyps,
      hyps = hyps, tpairs = tpairs, prop = prop'})
  else raise TERM ("renamed_prop: props disagree", [prop, prop']);

fun make_context ths NONE cert =
      (Context.Theory (Context.certificate_theory cert)
        handle ERROR msg => raise CONTEXT (msg, [], [], ths, NONE))
  | make_context ths (SOME ctxt) cert =
      let
        val thy_id = Context.certificate_theory_id cert;
        val thy_id' = Context.theory_id (Proof_Context.theory_of ctxt);
      in
        if Context.subthy_id (thy_id, thy_id') then Context.Proof ctxt
        else raise CONTEXT ("Bad context", [], [], ths, SOME (Context.Proof ctxt))
      end;

fun make_context_certificate ths opt_ctxt cert =
  let
    val context = make_context ths opt_ctxt cert;
    val cert' = Context.Certificate (Context.theory_of context);
  in (context, cert') end;

(*explicit weakening: maps |- B to A |- B*)
fun weaken raw_ct th =
  let
    val ct as Cterm {t = A, T, sorts, maxidx = maxidxA, ...} = adjust_maxidx_cterm ~1 raw_ct;
    val Thm (der, {tags, maxidx, constraints, shyps, hyps, tpairs, prop, ...}) = th;
  in
    if T <> propT then
      raise THM ("weaken: assumptions must have type prop", 0, [])
    else if maxidxA <> ~1 then
      raise THM ("weaken: assumptions may not contain schematic variables", maxidxA, [])
    else
      Thm (der,
       {cert = join_certificate1 (ct, th),
        tags = tags,
        maxidx = maxidx,
        constraints = constraints,
        shyps = Sorts.union sorts shyps,
        hyps = insert_hyps A hyps,
        tpairs = tpairs,
        prop = prop})
  end;

fun weaken_sorts raw_sorts ct =
  let
    val Cterm {cert, t, T, maxidx, sorts} = ct;
    val thy = theory_of_cterm ct;
    val more_sorts = Sorts.make (map (Sign.certify_sort thy) raw_sorts);
    val sorts' = Sorts.union sorts more_sorts;
  in Cterm {cert = cert, t = t, T = T, maxidx = maxidx, sorts = sorts'} end;



(** derivations and promised proofs **)

fun make_deriv promises oracles thms proof =
  Deriv {promises = promises, body = PBody {oracles = oracles, thms = thms, proof = proof}};

val empty_deriv = make_deriv [] [] [] MinProof;


(* inference rules *)

val promise_ord: (serial * thm future) ord = fn ((i, _), (j, _)) => int_ord (j, i);

fun bad_proofs i =
  error ("Illegal level of detail for proof objects: " ^ string_of_int i);

fun deriv_rule2 f
    (Deriv {promises = ps1, body = PBody {oracles = oracles1, thms = thms1, proof = prf1}})
    (Deriv {promises = ps2, body = PBody {oracles = oracles2, thms = thms2, proof = prf2}}) =
  let
    val ps = Ord_List.union promise_ord ps1 ps2;
    val oracles = Proofterm.unions_oracles [oracles1, oracles2];
    val thms = Proofterm.unions_thms [thms1, thms2];
    val prf =
      (case ! Proofterm.proofs of
        2 => f prf1 prf2
      | 1 => MinProof
      | 0 => MinProof
      | i => bad_proofs i);
  in make_deriv ps oracles thms prf end;

fun deriv_rule1 f = deriv_rule2 (K f) empty_deriv;

fun deriv_rule0 make_prf =
  if ! Proofterm.proofs <= 1 then empty_deriv
  else deriv_rule1 I (make_deriv [] [] [] (make_prf ()));

fun deriv_rule_unconditional f (Deriv {promises, body = PBody {oracles, thms, proof}}) =
  make_deriv promises oracles thms (f proof);


(* fulfilled proofs *)

fun raw_promises_of (Thm (Deriv {promises, ...}, _)) = promises;

fun join_promises [] = ()
  | join_promises promises = join_promises_of (Future.joins (map snd promises))
and join_promises_of thms = join_promises (Ord_List.make promise_ord (maps raw_promises_of thms));

fun fulfill_body (th as Thm (Deriv {promises, body}, _)) =
  let val fulfilled_promises = map #1 promises ~~ map fulfill_body (Future.joins (map #2 promises))
  in Proofterm.fulfill_norm_proof (theory_of_thm th) fulfilled_promises body end;

fun proof_bodies_of thms = (join_promises_of thms; map fulfill_body thms);
val proof_body_of = singleton proof_bodies_of;
val proof_of = Proofterm.proof_of o proof_body_of;

fun reconstruct_proof_of thm =
  Proofterm.reconstruct_proof (theory_of_thm thm) (prop_of thm) (proof_of thm);

val consolidate = ignore o proof_bodies_of;

fun expose_proofs thy thms =
  if Proofterm.export_proof_boxes_required thy then
    Proofterm.export_proof_boxes (proof_bodies_of (map (transfer thy) thms))
  else ();

fun expose_proof thy = expose_proofs thy o single;


(* future rule *)

fun future_result i orig_cert orig_shyps orig_prop thm =
  let
    fun err msg = raise THM ("future_result: " ^ msg, 0, [thm]);
    val Thm (Deriv {promises, ...}, {cert, constraints, shyps, hyps, tpairs, prop, ...}) = thm;

    val _ = Context.eq_certificate (cert, orig_cert) orelse err "bad theory";
    val _ = prop aconv orig_prop orelse err "bad prop";
    val _ = null constraints orelse err "bad sort constraints";
    val _ = null tpairs orelse err "bad flex-flex constraints";
    val _ = null hyps orelse err "bad hyps";
    val _ = Sorts.subset (shyps, orig_shyps) orelse err "bad shyps";
    val _ = forall (fn (j, _) => i <> j) promises orelse err "bad dependencies";
    val _ = join_promises promises;
  in thm end;

fun future future_thm ct =
  let
    val Cterm {cert = cert, t = prop, T, maxidx, sorts} = ct;
    val _ = T <> propT andalso raise CTERM ("future: prop expected", [ct]);
    val _ =
      if Proofterm.proofs_enabled ()
      then raise CTERM ("future: proof terms enabled", [ct]) else ();

    val i = serial ();
    val future = future_thm |> Future.map (future_result i cert sorts prop);
  in
    Thm (make_deriv [(i, future)] [] [] MinProof,
     {cert = cert,
      tags = [],
      maxidx = maxidx,
      constraints = [],
      shyps = sorts,
      hyps = [],
      tpairs = [],
      prop = prop})
  end;



(** Axioms **)

fun axiom thy name =
  (case Name_Space.lookup (Theory.axiom_table thy) name of
    SOME prop =>
      let
        val der = deriv_rule0 (fn () => Proofterm.axm_proof name prop);
        val cert = Context.Certificate thy;
        val maxidx = maxidx_of_term prop;
        val shyps = Sorts.insert_term prop [];
      in
        Thm (der,
          {cert = cert, tags = [], maxidx = maxidx,
            constraints = [], shyps = shyps, hyps = [], tpairs = [], prop = prop})
      end
  | NONE => raise THEORY ("No axiom " ^ quote name, [thy]));

fun all_axioms_of thy =
  map (fn (name, _) => (name, axiom thy name)) (Theory.all_axioms_of thy);


(* tags *)

val get_tags = #tags o rep_thm;

fun map_tags f (Thm (der, {cert, tags, maxidx, constraints, shyps, hyps, tpairs, prop})) =
  Thm (der, {cert = cert, tags = f tags, maxidx = maxidx, constraints = constraints,
    shyps = shyps, hyps = hyps, tpairs = tpairs, prop = prop});


(* technical adjustments *)

fun norm_proof (th as Thm (der, args)) =
  Thm (deriv_rule1 (Proofterm.rew_proof (theory_of_thm th)) der, args);

fun adjust_maxidx_thm i
    (th as Thm (der, {cert, tags, maxidx, constraints, shyps, hyps, tpairs, prop})) =
  if maxidx = i then th
  else if maxidx < i then
    Thm (der, {maxidx = i, cert = cert, tags = tags, constraints = constraints, shyps = shyps,
      hyps = hyps, tpairs = tpairs, prop = prop})
  else
    Thm (der, {maxidx = Int.max (maxidx_tpairs tpairs (maxidx_of_term prop), i),
      cert = cert, tags = tags, constraints = constraints, shyps = shyps,
      hyps = hyps, tpairs = tpairs, prop = prop});



(*** Theory data ***)

(* type classes *)

structure Aritytab =
  Table(
    type key = string * sort list * class;
    val ord =
      fast_string_ord o apply2 #1
      ||| fast_string_ord o apply2 #3
      ||| list_ord Term_Ord.sort_ord o apply2 #2;
  );

datatype classes = Classes of
 {classrels: thm Symreltab.table,
  arities: (thm * string * serial) Aritytab.table};

fun make_classes (classrels, arities) = Classes {classrels = classrels, arities = arities};

val empty_classes = make_classes (Symreltab.empty, Aritytab.empty);

(*see Theory.at_begin hook for transitive closure of classrels and arity completion*)
fun merge_classes
   (Classes {classrels = classrels1, arities = arities1},
    Classes {classrels = classrels2, arities = arities2}) =
  let
    val classrels' = Symreltab.merge (K true) (classrels1, classrels2);
    val arities' = Aritytab.merge (K true) (arities1, arities2);
  in make_classes (classrels', arities') end;


(* data *)

structure Data = Theory_Data
(
  type T =
    unit Name_Space.table *  (*oracles: authentic derivation names*)
    classes;  (*type classes within the logic*)

  val empty : T = (Name_Space.empty_table Markup.oracleN, empty_classes);
  fun merge ((oracles1, sorts1), (oracles2, sorts2)) : T =
    (Name_Space.merge_tables (oracles1, oracles2), merge_classes (sorts1, sorts2));
);

val get_oracles = #1 o Data.get;
val map_oracles = Data.map o apfst;

val get_classes = (fn (_, Classes args) => args) o Data.get;
val get_classrels = #classrels o get_classes;
val get_arities = #arities o get_classes;

fun map_classes f =
  (Data.map o apsnd) (fn Classes {classrels, arities} => make_classes (f (classrels, arities)));
fun map_classrels f = map_classes (fn (classrels, arities) => (f classrels, arities));
fun map_arities f = map_classes (fn (classrels, arities) => (classrels, f arities));


(* type classes *)

fun the_classrel thy (c1, c2) =
  (case Symreltab.lookup (get_classrels thy) (c1, c2) of
    SOME thm => transfer thy thm
  | NONE => error ("Unproven class relation " ^
      Syntax.string_of_classrel (Proof_Context.init_global thy) [c1, c2]));

fun the_arity thy (a, Ss, c) =
  (case Aritytab.lookup (get_arities thy) (a, Ss, c) of
    SOME (thm, _, _) => transfer thy thm
  | NONE => error ("Unproven type arity " ^
      Syntax.string_of_arity (Proof_Context.init_global thy) (a, Ss, [c])));

val classrel_proof = proof_of oo the_classrel;
val arity_proof = proof_of oo the_arity;


(* solve sort constraints by pro-forma proof *)

local

fun union_digest (oracles1, thms1) (oracles2, thms2) =
  (Proofterm.unions_oracles [oracles1, oracles2], Proofterm.unions_thms [thms1, thms2]);

fun thm_digest (Thm (Deriv {body = PBody {oracles, thms, ...}, ...}, _)) =
  (oracles, thms);

fun constraint_digest ({theory = thy, typ, sort, ...}: constraint) =
  Sorts.of_sort_derivation (Sign.classes_of thy)
   {class_relation = fn _ => fn _ => fn (digest, c1) => fn c2 =>
      if c1 = c2 then ([], []) else union_digest digest (thm_digest (the_classrel thy (c1, c2))),
    type_constructor = fn (a, _) => fn dom => fn c =>
      let val arity_digest = thm_digest (the_arity thy (a, (map o map) #2 dom, c))
      in (fold o fold) (union_digest o #1) dom arity_digest end,
    type_variable = fn T => map (pair ([], [])) (Type.sort_of_atyp T)}
   (typ, sort);

in

fun solve_constraints (thm as Thm (_, {constraints = [], ...})) = thm
  | solve_constraints (thm as Thm (der, args)) =
      let
        val {cert, tags, maxidx, constraints, shyps, hyps, tpairs, prop} = args;

        val thy = Context.certificate_theory cert;
        val bad_thys =
          constraints |> map_filter (fn {theory = thy', ...} =>
            if Context.eq_thy (thy, thy') then NONE else SOME thy');
        val () =
          if null bad_thys then ()
          else
            raise THEORY ("solve_constraints: bad theories for theorem\n" ^
              Syntax.string_of_term_global thy (prop_of thm), thy :: bad_thys);

        val Deriv {promises, body = PBody {oracles, thms, proof}} = der;
        val (oracles', thms') = (oracles, thms)
          |> fold (fold union_digest o constraint_digest) constraints;
        val body' = PBody {oracles = oracles', thms = thms', proof = proof};
      in
        Thm (Deriv {promises = promises, body = body'},
          {constraints = [], cert = cert, tags = tags, maxidx = maxidx,
            shyps = shyps, hyps = hyps, tpairs = tpairs, prop = prop})
      end;

end;

(*Dangling sort constraints of a thm*)
fun extra_shyps (th as Thm (_, {shyps, ...})) =
  Sorts.subtract (fold_terms {hyps = true} Sorts.insert_term th []) shyps;

(*Remove extra sorts that are witnessed by type signature information*)
fun strip_shyps thm =
  (case thm of
    Thm (_, {shyps = [], ...}) => thm
  | Thm (der, {cert, tags, maxidx, constraints, shyps, hyps, tpairs, prop}) =>
      let
        val thy = theory_of_thm thm;

        val algebra = Sign.classes_of thy;
        val minimize = Sorts.minimize_sort algebra;
        val le = Sorts.sort_le algebra;
        fun lt (S1, S2) = le (S1, S2) andalso not (le (S2, S1));
        fun rel (S1, S2) = if S1 = S2 then [] else [(Term.aT S1, S2)];

        val present =
          (fold_terms {hyps = true} o fold_types o fold_atyps_sorts) (insert (eq_fst op =)) thm [];
        val extra = fold (Sorts.remove_sort o #2) present shyps;
        val witnessed = Sign.witness_sorts thy present extra;
        val non_witnessed = fold (Sorts.remove_sort o #2) witnessed extra |> map (`minimize);

        val extra' =
          non_witnessed |> map_filter (fn (S, _) =>
            if non_witnessed |> exists (fn (S', _) => lt (S', S)) then NONE else SOME S)
          |> Sorts.make;

        val constrs' =
          non_witnessed |> maps (fn (S1, S2) =>
            let val S0 = the (find_first (fn S => le (S, S1)) extra')
            in rel (S0, S1) @ rel (S1, S2) end);

        val constraints' = fold (insert_constraints thy) (witnessed @ constrs') constraints;
        val shyps' = fold (Sorts.insert_sort o #2) present extra';
      in
        Thm (deriv_rule_unconditional
          (Proofterm.strip_shyps_proof algebra present witnessed extra') der,
         {cert = cert, tags = tags, maxidx = maxidx, constraints = constraints',
          shyps = shyps', hyps = hyps, tpairs = tpairs, prop = prop})
      end)
  |> solve_constraints;



(*** Closed theorems with official name ***)

(*non-deterministic, depends on unknown promises*)
fun derivation_closed (Thm (Deriv {body, ...}, _)) =
  Proofterm.compact_proof (Proofterm.proof_of body);

(*non-deterministic, depends on unknown promises*)
fun raw_derivation_name (Thm (Deriv {body, ...}, {shyps, hyps, prop, ...})) =
  Proofterm.get_approximative_name shyps hyps prop (Proofterm.proof_of body);

fun expand_name (Thm (Deriv {body, ...}, {shyps, hyps, prop, ...})) =
  let
    val self_id =
      (case Proofterm.get_identity shyps hyps prop (Proofterm.proof_of body) of
        NONE => K false
      | SOME {serial, ...} => fn (header: Proofterm.thm_header) => serial = #serial header);
    fun expand header = if self_id header orelse #name header = "" then SOME "" else NONE;
  in expand end;

(*deterministic name of finished proof*)
fun derivation_name (thm as Thm (_, {shyps, hyps, prop, ...})) =
  Proofterm.get_approximative_name shyps hyps prop (proof_of thm);

(*identified PThm node*)
fun derivation_id (thm as Thm (_, {shyps, hyps, prop, ...})) =
  Proofterm.get_id shyps hyps prop (proof_of thm);

(*dependencies of PThm node*)
fun thm_deps (thm as Thm (Deriv {promises = [], body = PBody {thms, ...}, ...}, _)) =
      (case (derivation_id thm, thms) of
        (SOME {serial = i, ...}, [(j, thm_node)]) =>
          if i = j then Proofterm.thm_node_thms thm_node else thms
      | _ => thms)
  | thm_deps thm = raise THM ("thm_deps: bad promises", 0, [thm]);

fun name_derivation name_pos =
  strip_shyps #> (fn thm as Thm (der, args) =>
    let
      val thy = theory_of_thm thm;

      val Deriv {promises, body} = der;
      val {shyps, hyps, prop, tpairs, ...} = args;

      val _ = null tpairs orelse raise THM ("name_derivation: bad flex-flex constraints", 0, [thm]);

      val ps = map (apsnd (Future.map fulfill_body)) promises;
      val (pthm, proof) =
        Proofterm.thm_proof thy (classrel_proof thy) (arity_proof thy)
          name_pos shyps hyps prop ps body;
      val der' = make_deriv [] [] [pthm] proof;
    in Thm (der', args) end);

fun close_derivation pos =
  solve_constraints #> (fn thm =>
    if not (null (tpairs_of thm)) orelse derivation_closed thm then thm
    else name_derivation ("", pos) thm);

val trim_context = solve_constraints #> trim_context_thm;



(*** Oracles ***)

fun add_oracle (b, oracle_fn) thy =
  let
    val (name, oracles') = Name_Space.define (Context.Theory thy) true (b, ()) (get_oracles thy);
    val thy' = map_oracles (K oracles') thy;
    fun invoke_oracle arg =
      let val Cterm {cert = cert2, t = prop, T, maxidx, sorts} = oracle_fn arg in
        if T <> propT then
          raise THM ("Oracle's result must have type prop: " ^ name, 0, [])
        else
          let
            val (oracle, prf) =
              (case ! Proofterm.proofs of
                2 => (((name, Position.thread_data ()), SOME prop), Proofterm.oracle_proof name prop)
              | 1 => (((name, Position.thread_data ()), SOME prop), MinProof)
              | 0 => (((name, Position.none), NONE), MinProof)
              | i => bad_proofs i);
          in
            Thm (make_deriv [] [oracle] [] prf,
             {cert = Context.join_certificate (Context.Certificate thy', cert2),
              tags = [],
              maxidx = maxidx,
              constraints = [],
              shyps = sorts,
              hyps = [],
              tpairs = [],
              prop = prop})
          end
      end;
  in ((name, invoke_oracle), thy') end;

val oracle_space = Name_Space.space_of_table o get_oracles;

fun pretty_oracle ctxt =
  Name_Space.pretty ctxt (oracle_space (Proof_Context.theory_of ctxt));

fun extern_oracles verbose ctxt =
  map #1 (Name_Space.markup_table verbose ctxt (get_oracles (Proof_Context.theory_of ctxt)));

fun check_oracle ctxt =
  Name_Space.check (Context.Proof ctxt) (get_oracles (Proof_Context.theory_of ctxt)) #> #1;



(*** Meta rules ***)

(** primitive rules **)

(*The assumption rule A |- A*)
fun assume raw_ct =
  let val Cterm {cert, t = prop, T, maxidx, sorts} = adjust_maxidx_cterm ~1 raw_ct in
    if T <> propT then
      raise THM ("assume: prop", 0, [])
    else if maxidx <> ~1 then
      raise THM ("assume: variables", maxidx, [])
    else Thm (deriv_rule0 (fn () => Proofterm.Hyp prop),
     {cert = cert,
      tags = [],
      maxidx = ~1,
      constraints = [],
      shyps = sorts,
      hyps = [prop],
      tpairs = [],
      prop = prop})
  end;

(*Implication introduction
    [A]
     :
     B
  -------
  A \<Longrightarrow> B
*)
fun implies_intr
    (ct as Cterm {t = A, T, maxidx = maxidx1, sorts, ...})
    (th as Thm (der, {maxidx = maxidx2, hyps, constraints, shyps, tpairs, prop, ...})) =
  if T <> propT then
    raise THM ("implies_intr: assumptions must have type prop", 0, [th])
  else
    Thm (deriv_rule1 (Proofterm.implies_intr_proof A) der,
     {cert = join_certificate1 (ct, th),
      tags = [],
      maxidx = Int.max (maxidx1, maxidx2),
      constraints = constraints,
      shyps = Sorts.union sorts shyps,
      hyps = remove_hyps A hyps,
      tpairs = tpairs,
      prop = Logic.mk_implies (A, prop)});


(*Implication elimination
  A \<Longrightarrow> B    A
  ------------
        B
*)
fun implies_elim thAB thA =
  let
    val Thm (derA,
      {maxidx = maxidx1, hyps = hypsA, constraints = constraintsA, shyps = shypsA,
        tpairs = tpairsA, prop = propA, ...}) = thA
    and Thm (der, {maxidx = maxidx2, hyps, constraints, shyps, tpairs, prop, ...}) = thAB;
    fun err () = raise THM ("implies_elim: major premise", 0, [thAB, thA]);
  in
    (case prop of
      Const ("Pure.imp", _) $ A $ B =>
        if A aconv propA then
          Thm (deriv_rule2 (curry Proofterm.%%) der derA,
           {cert = join_certificate2 (thAB, thA),
            tags = [],
            maxidx = Int.max (maxidx1, maxidx2),
            constraints = union_constraints constraintsA constraints,
            shyps = Sorts.union shypsA shyps,
            hyps = union_hyps hypsA hyps,
            tpairs = union_tpairs tpairsA tpairs,
            prop = B})
        else err ()
    | _ => err ())
  end;

(*Forall introduction.  The Free or Var x must not be free in the hypotheses.
    [x]
     :
     A
  ------
  \<And>x. A
*)
fun forall_intr
    (ct as Cterm {maxidx = maxidx1, t = x, T, sorts, ...})
    (th as Thm (der, {maxidx = maxidx2, constraints, shyps, hyps, tpairs, prop, ...})) =
  let
    fun result a =
      Thm (deriv_rule1 (Proofterm.forall_intr_proof (a, x) NONE) der,
       {cert = join_certificate1 (ct, th),
        tags = [],
        maxidx = Int.max (maxidx1, maxidx2),
        constraints = constraints,
        shyps = Sorts.union sorts shyps,
        hyps = hyps,
        tpairs = tpairs,
        prop = Logic.all_const T $ Abs (a, T, abstract_over (x, prop))});
    fun check_occs a x ts =
      if exists (fn t => Logic.occs (x, t)) ts then
        raise THM ("forall_intr: variable " ^ quote a ^ " free in assumptions", 0, [th])
      else ();
  in
    (case x of
      Free (a, _) => (check_occs a x hyps; check_occs a x (terms_of_tpairs tpairs); result a)
    | Var ((a, _), _) => (check_occs a x (terms_of_tpairs tpairs); result a)
    | _ => raise THM ("forall_intr: not a variable", 0, [th]))
  end;

(*Forall elimination
  \<And>x. A
  ------
  A[t/x]
*)
fun forall_elim
    (ct as Cterm {t, T, maxidx = maxidx1, sorts, ...})
    (th as Thm (der, {maxidx = maxidx2, constraints, shyps, hyps, tpairs, prop, ...})) =
  (case prop of
    Const ("Pure.all", Type ("fun", [Type ("fun", [qary, _]), _])) $ A =>
      if T <> qary then
        raise THM ("forall_elim: type mismatch", 0, [th])
      else
        Thm (deriv_rule1 (Proofterm.% o rpair (SOME t)) der,
         {cert = join_certificate1 (ct, th),
          tags = [],
          maxidx = Int.max (maxidx1, maxidx2),
          constraints = constraints,
          shyps = Sorts.union sorts shyps,
          hyps = hyps,
          tpairs = tpairs,
          prop = Term.betapply (A, t)})
  | _ => raise THM ("forall_elim: not quantified", 0, [th]));


(* Equality *)

(*Reflexivity
  t \<equiv> t
*)
fun reflexive (Cterm {cert, t, T = _, maxidx, sorts}) =
  Thm (deriv_rule0 (fn () => Proofterm.reflexive_proof),
   {cert = cert,
    tags = [],
    maxidx = maxidx,
    constraints = [],
    shyps = sorts,
    hyps = [],
    tpairs = [],
    prop = Logic.mk_equals (t, t)});

(*Symmetry
  t \<equiv> u
  ------
  u \<equiv> t
*)
fun symmetric (th as Thm (der, {cert, maxidx, constraints, shyps, hyps, tpairs, prop, ...})) =
  (case prop of
    (eq as Const ("Pure.eq", _)) $ t $ u =>
      Thm (deriv_rule1 Proofterm.symmetric_proof der,
       {cert = cert,
        tags = [],
        maxidx = maxidx,
        constraints = constraints,
        shyps = shyps,
        hyps = hyps,
        tpairs = tpairs,
        prop = eq $ u $ t})
    | _ => raise THM ("symmetric", 0, [th]));

(*Transitivity
  t1 \<equiv> u    u \<equiv> t2
  ------------------
       t1 \<equiv> t2
*)
fun transitive th1 th2 =
  let
    val Thm (der1, {maxidx = maxidx1, hyps = hyps1, constraints = constraints1, shyps = shyps1,
        tpairs = tpairs1, prop = prop1, ...}) = th1
    and Thm (der2, {maxidx = maxidx2, hyps = hyps2, constraints = constraints2, shyps = shyps2,
        tpairs = tpairs2, prop = prop2, ...}) = th2;
    fun err msg = raise THM ("transitive: " ^ msg, 0, [th1, th2]);
  in
    case (prop1, prop2) of
      ((eq as Const ("Pure.eq", Type (_, [U, _]))) $ t1 $ u, Const ("Pure.eq", _) $ u' $ t2) =>
        if not (u aconv u') then err "middle term"
        else
          Thm (deriv_rule2 (Proofterm.transitive_proof U u) der1 der2,
           {cert = join_certificate2 (th1, th2),
            tags = [],
            maxidx = Int.max (maxidx1, maxidx2),
            constraints = union_constraints constraints1 constraints2,
            shyps = Sorts.union shyps1 shyps2,
            hyps = union_hyps hyps1 hyps2,
            tpairs = union_tpairs tpairs1 tpairs2,
            prop = eq $ t1 $ t2})
     | _ =>  err "premises"
  end;

(*Beta-conversion
  (\<lambda>x. t) u \<equiv> t[u/x]
  fully beta-reduces the term if full = true
*)
fun beta_conversion full (Cterm {cert, t, T = _, maxidx, sorts}) =
  let val t' =
    if full then Envir.beta_norm t
    else
      (case t of Abs (_, _, bodt) $ u => subst_bound (u, bodt)
      | _ => raise THM ("beta_conversion: not a redex", 0, []));
  in
    Thm (deriv_rule0 (fn () => Proofterm.reflexive_proof),
     {cert = cert,
      tags = [],
      maxidx = maxidx,
      constraints = [],
      shyps = sorts,
      hyps = [],
      tpairs = [],
      prop = Logic.mk_equals (t, t')})
  end;

fun eta_conversion (Cterm {cert, t, T = _, maxidx, sorts}) =
  Thm (deriv_rule0 (fn () => Proofterm.reflexive_proof),
   {cert = cert,
    tags = [],
    maxidx = maxidx,
    constraints = [],
    shyps = sorts,
    hyps = [],
    tpairs = [],
    prop = Logic.mk_equals (t, Envir.eta_contract t)});

fun eta_long_conversion (Cterm {cert, t, T = _, maxidx, sorts}) =
  Thm (deriv_rule0 (fn () => Proofterm.reflexive_proof),
   {cert = cert,
    tags = [],
    maxidx = maxidx,
    constraints = [],
    shyps = sorts,
    hyps = [],
    tpairs = [],
    prop = Logic.mk_equals (t, Envir.eta_long [] t)});

(*The abstraction rule.  The Free or Var x must not be free in the hypotheses.
  The bound variable will be named "a" (since x will be something like x320)
      t \<equiv> u
  --------------
  \<lambda>x. t \<equiv> \<lambda>x. u
*)
fun abstract_rule a
    (Cterm {t = x, T, sorts, ...})
    (th as Thm (der, {cert, maxidx, hyps, constraints, shyps, tpairs, prop, ...})) =
  let
    val (t, u) = Logic.dest_equals prop
      handle TERM _ => raise THM ("abstract_rule: premise not an equality", 0, [th]);
    val result =
      Thm (deriv_rule1 (Proofterm.abstract_rule_proof (a, x)) der,
       {cert = cert,
        tags = [],
        maxidx = maxidx,
        constraints = constraints,
        shyps = Sorts.union sorts shyps,
        hyps = hyps,
        tpairs = tpairs,
        prop = Logic.mk_equals
          (Abs (a, T, abstract_over (x, t)), Abs (a, T, abstract_over (x, u)))});
    fun check_occs a x ts =
      if exists (fn t => Logic.occs (x, t)) ts then
        raise THM ("abstract_rule: variable " ^ quote a ^ " free in assumptions", 0, [th])
      else ();
  in
    (case x of
      Free (a, _) => (check_occs a x hyps; check_occs a x (terms_of_tpairs tpairs); result)
    | Var ((a, _), _) => (check_occs a x (terms_of_tpairs tpairs); result)
    | _ => raise THM ("abstract_rule: not a variable", 0, [th]))
  end;

(*The combination rule
  f \<equiv> g  t \<equiv> u
  -------------
    f t \<equiv> g u
*)
fun combination th1 th2 =
  let
    val Thm (der1, {maxidx = maxidx1, constraints = constraints1, shyps = shyps1,
        hyps = hyps1, tpairs = tpairs1, prop = prop1, ...}) = th1
    and Thm (der2, {maxidx = maxidx2, constraints = constraints2, shyps = shyps2,
        hyps = hyps2, tpairs = tpairs2, prop = prop2, ...}) = th2;
    fun chktypes fT tT =
      (case fT of
        Type ("fun", [T1, _]) =>
          if T1 <> tT then
            raise THM ("combination: types", 0, [th1, th2])
          else ()
      | _ => raise THM ("combination: not function type", 0, [th1, th2]));
  in
    (case (prop1, prop2) of
      (Const ("Pure.eq", Type ("fun", [fT, _])) $ f $ g,
       Const ("Pure.eq", Type ("fun", [tT, _])) $ t $ u) =>
        (chktypes fT tT;
          Thm (deriv_rule2 (Proofterm.combination_proof f g t u) der1 der2,
           {cert = join_certificate2 (th1, th2),
            tags = [],
            maxidx = Int.max (maxidx1, maxidx2),
            constraints = union_constraints constraints1 constraints2,
            shyps = Sorts.union shyps1 shyps2,
            hyps = union_hyps hyps1 hyps2,
            tpairs = union_tpairs tpairs1 tpairs2,
            prop = Logic.mk_equals (f $ t, g $ u)}))
     | _ => raise THM ("combination: premises", 0, [th1, th2]))
  end;

(*Equality introduction
  A \<Longrightarrow> B  B \<Longrightarrow> A
  ----------------
       A \<equiv> B
*)
fun equal_intr th1 th2 =
  let
    val Thm (der1, {maxidx = maxidx1, constraints = constraints1, shyps = shyps1,
      hyps = hyps1, tpairs = tpairs1, prop = prop1, ...}) = th1
    and Thm (der2, {maxidx = maxidx2, constraints = constraints2, shyps = shyps2,
      hyps = hyps2, tpairs = tpairs2, prop = prop2, ...}) = th2;
    fun err msg = raise THM ("equal_intr: " ^ msg, 0, [th1, th2]);
  in
    (case (prop1, prop2) of
      (Const("Pure.imp", _) $ A $ B, Const("Pure.imp", _) $ B' $ A') =>
        if A aconv A' andalso B aconv B' then
          Thm (deriv_rule2 (Proofterm.equal_intr_proof A B) der1 der2,
           {cert = join_certificate2 (th1, th2),
            tags = [],
            maxidx = Int.max (maxidx1, maxidx2),
            constraints = union_constraints constraints1 constraints2,
            shyps = Sorts.union shyps1 shyps2,
            hyps = union_hyps hyps1 hyps2,
            tpairs = union_tpairs tpairs1 tpairs2,
            prop = Logic.mk_equals (A, B)})
        else err "not equal"
    | _ =>  err "premises")
  end;

(*The equal propositions rule
  A \<equiv> B  A
  ---------
      B
*)
fun equal_elim th1 th2 =
  let
    val Thm (der1, {maxidx = maxidx1, constraints = constraints1, shyps = shyps1,
      hyps = hyps1, tpairs = tpairs1, prop = prop1, ...}) = th1
    and Thm (der2, {maxidx = maxidx2, constraints = constraints2, shyps = shyps2,
      hyps = hyps2, tpairs = tpairs2, prop = prop2, ...}) = th2;
    fun err msg = raise THM ("equal_elim: " ^ msg, 0, [th1, th2]);
  in
    (case prop1 of
      Const ("Pure.eq", _) $ A $ B =>
        if prop2 aconv A then
          Thm (deriv_rule2 (Proofterm.equal_elim_proof A B) der1 der2,
           {cert = join_certificate2 (th1, th2),
            tags = [],
            maxidx = Int.max (maxidx1, maxidx2),
            constraints = union_constraints constraints1 constraints2,
            shyps = Sorts.union shyps1 shyps2,
            hyps = union_hyps hyps1 hyps2,
            tpairs = union_tpairs tpairs1 tpairs2,
            prop = B})
        else err "not equal"
     | _ =>  err "major premise")
  end;



(**** Derived rules ****)

(*Smash unifies the list of term pairs leaving no flex-flex pairs.
  Instantiates the theorem and deletes trivial tpairs.  Resulting
  sequence may contain multiple elements if the tpairs are not all
  flex-flex.*)
fun flexflex_rule opt_ctxt =
  solve_constraints #> (fn th =>
    let
      val Thm (der, {cert, maxidx, constraints, shyps, hyps, tpairs, prop, ...}) = th;
      val (context, cert') = make_context_certificate [th] opt_ctxt cert;
    in
      Unify.smash_unifiers context tpairs (Envir.empty maxidx)
      |> Seq.map (fn env =>
          if Envir.is_empty env then th
          else
            let
              val tpairs' = tpairs |> map (apply2 (Envir.norm_term env))
                (*remove trivial tpairs, of the form t \<equiv> t*)
                |> filter_out (op aconv);
              val der' = deriv_rule1 (Proofterm.norm_proof' env) der;
              val constraints' =
                insert_constraints_env (Context.certificate_theory cert') env constraints;
              val prop' = Envir.norm_term env prop;
              val maxidx = maxidx_tpairs tpairs' (maxidx_of_term prop');
              val shyps = Envir.insert_sorts env shyps;
            in
              Thm (der', {cert = cert', tags = [], maxidx = maxidx, constraints = constraints',
                shyps = shyps, hyps = hyps, tpairs = tpairs', prop = prop'})
            end)
    end);


(*Generalization of fixed variables
           A
  --------------------
  A[?'a/'a, ?x/x, ...]
*)

fun generalize (tfrees, frees) idx th =
  if Names.is_empty tfrees andalso Names.is_empty frees then th
  else
    let
      val Thm (der, {cert, maxidx, constraints, shyps, hyps, tpairs, prop, ...}) = th;
      val _ = idx <= maxidx andalso raise THM ("generalize: bad index", idx, [th]);

      val bad_type =
        if Names.is_empty tfrees then K false
        else Term.exists_subtype (fn TFree (a, _) => Names.defined tfrees a | _ => false);
      fun bad_term (Free (x, T)) = bad_type T orelse Names.defined frees x
        | bad_term (Var (_, T)) = bad_type T
        | bad_term (Const (_, T)) = bad_type T
        | bad_term (Abs (_, T, t)) = bad_type T orelse bad_term t
        | bad_term (t $ u) = bad_term t orelse bad_term u
        | bad_term (Bound _) = false;
      val _ = exists bad_term hyps andalso
        raise THM ("generalize: variable free in assumptions", 0, [th]);

      val generalize = Term_Subst.generalize (tfrees, frees) idx;
      val prop' = generalize prop;
      val tpairs' = map (apply2 generalize) tpairs;
      val maxidx' = maxidx_tpairs tpairs' (maxidx_of_term prop');
    in
      Thm (deriv_rule1 (Proofterm.generalize_proof (tfrees, frees) idx prop) der,
       {cert = cert,
        tags = [],
        maxidx = maxidx',
        constraints = constraints,
        shyps = shyps,
        hyps = hyps,
        tpairs = tpairs',
        prop = prop'})
    end;

fun generalize_cterm (tfrees, frees) idx (ct as Cterm {cert, t, T, maxidx, sorts}) =
  if Names.is_empty tfrees andalso Names.is_empty frees then ct
  else if idx <= maxidx then raise CTERM ("generalize_cterm: bad index", [ct])
  else
    Cterm {cert = cert, sorts = sorts,
      T = Term_Subst.generalizeT tfrees idx T,
      t = Term_Subst.generalize (tfrees, frees) idx t,
      maxidx = Int.max (maxidx, idx)};

fun generalize_ctyp tfrees idx (cT as Ctyp {cert, T, maxidx, sorts}) =
  if Names.is_empty tfrees then cT
  else if idx <= maxidx then raise CTERM ("generalize_ctyp: bad index", [])
  else
    Ctyp {cert = cert, sorts = sorts,
      T = Term_Subst.generalizeT tfrees idx T,
      maxidx = Int.max (maxidx, idx)};


(*Instantiation of schematic variables
           A
  --------------------
  A[t1/v1, ..., tn/vn]
*)

local

fun add_cert cert_of (_, c) cert = Context.join_certificate (cert, cert_of c);
val add_instT_cert = add_cert (fn Ctyp {cert, ...} => cert);
val add_inst_cert = add_cert (fn Cterm {cert, ...} => cert);

fun add_sorts sorts_of (_, c) sorts = Sorts.union (sorts_of c) sorts;
val add_instT_sorts = add_sorts (fn Ctyp {sorts, ...} => sorts);
val add_inst_sorts = add_sorts (fn Cterm {sorts, ...} => sorts);

fun make_instT thy (v as (_, S)) (Ctyp {T = U, maxidx, ...}) =
  if Sign.of_sort thy (U, S) then (U, maxidx)
  else raise TYPE ("Type not of sort " ^ Syntax.string_of_sort_global thy S, [U], []);

fun make_inst thy (v as (_, T)) (Cterm {t = u, T = U, maxidx, ...}) =
  if T = U then (u, maxidx)
  else
    let
      fun pretty_typing t ty =
        Pretty.block [Syntax.pretty_term_global thy t, Pretty.str " ::",
          Pretty.brk 1, Syntax.pretty_typ_global thy ty];
      val msg =
        Pretty.string_of (Pretty.block
         [Pretty.str "instantiate: type conflict",
          Pretty.fbrk, pretty_typing (Var v) T,
          Pretty.fbrk, pretty_typing u U])
    in raise TYPE (msg, [T, U], [Var v, u]) end;

fun prep_insts (instT, inst) (cert, sorts) =
  let
    val cert' = cert
      |> TVars.fold add_instT_cert instT
      |> Vars.fold add_inst_cert inst;
    val thy' =
      Context.certificate_theory cert' handle ERROR msg =>
        raise CONTEXT (msg, TVars.dest instT |> map #2, Vars.dest inst |> map #2, [], NONE);

    val sorts' = sorts
      |> TVars.fold add_instT_sorts instT
      |> Vars.fold add_inst_sorts inst;

    val instT' = TVars.map (make_instT thy') instT;
    val inst' = Vars.map (make_inst thy') inst;
  in ((instT', inst'), (cert', sorts')) end;

in

(*Left-to-right replacements: ctpairs = [..., (vi, ti), ...].
  Instantiates distinct Vars by terms of same type.
  Does NOT normalize the resulting theorem!*)
fun gen_instantiate inst_fn (instT, inst) th =
  if TVars.is_empty instT andalso Vars.is_empty inst then th
  else
    let
      val Thm (der, {cert, hyps, constraints, shyps, tpairs, prop, ...}) = th;
      val ((instT', inst'), (cert', shyps')) = prep_insts (instT, inst) (cert, shyps)
        handle CONTEXT (msg, cTs, cts, ths, context) =>
          raise CONTEXT (msg, cTs, cts, th :: ths, context);

      val subst = inst_fn (instT', inst');
      val (prop', maxidx1) = subst prop ~1;
      val (tpairs', maxidx') =
        fold_map (fn (t, u) => fn i => subst t i ||>> subst u) tpairs maxidx1;

      val thy' = Context.certificate_theory cert';
      val constraints' =
        TVars.fold (fn ((_, S), (T, _)) => insert_constraints thy' (T, S))
          instT' constraints;
    in
      Thm (deriv_rule1
        (fn d => Proofterm.instantiate (TVars.map (K #1) instT', Vars.map (K #1) inst') d) der,
       {cert = cert',
        tags = [],
        maxidx = maxidx',
        constraints = constraints',
        shyps = shyps',
        hyps = hyps,
        tpairs = tpairs',
        prop = prop'})
      |> solve_constraints
    end
    handle TYPE (msg, _, _) => raise THM (msg, 0, [th]);

val instantiate = gen_instantiate Term_Subst.instantiate_maxidx;
val instantiate_beta = gen_instantiate Term_Subst.instantiate_beta_maxidx;

fun gen_instantiate_cterm inst_fn (instT, inst) ct =
  if TVars.is_empty instT andalso Vars.is_empty inst then ct
  else
    let
      val Cterm {cert, t, T, sorts, ...} = ct;
      val ((instT', inst'), (cert', sorts')) = prep_insts (instT, inst) (cert, sorts);
      val subst = inst_fn (instT', inst');
      val substT = Term_Subst.instantiateT_maxidx instT';
      val (t', maxidx1) = subst t ~1;
      val (T', maxidx') = substT T maxidx1;
    in Cterm {cert = cert', t = t', T = T', sorts = sorts', maxidx = maxidx'} end
    handle TYPE (msg, _, _) => raise CTERM (msg, [ct]);

val instantiate_cterm = gen_instantiate_cterm Term_Subst.instantiate_maxidx;
val instantiate_beta_cterm = gen_instantiate_cterm Term_Subst.instantiate_beta_maxidx;

end;


(*The trivial implication A \<Longrightarrow> A, justified by assume and forall rules.
  A can contain Vars, not so for assume!*)
fun trivial (Cterm {cert, t = A, T, maxidx, sorts}) =
  if T <> propT then
    raise THM ("trivial: the term must have type prop", 0, [])
  else
    Thm (deriv_rule0 (fn () => Proofterm.trivial_proof),
     {cert = cert,
      tags = [],
      maxidx = maxidx,
      constraints = [],
      shyps = sorts,
      hyps = [],
      tpairs = [],
      prop = Logic.mk_implies (A, A)});

(*Axiom-scheme reflecting signature contents
        T :: c
  -------------------
  OFCLASS(T, c_class)
*)
fun of_class (cT, raw_c) =
  let
    val Ctyp {cert, T, ...} = cT;
    val thy = Context.certificate_theory cert
      handle ERROR msg => raise CONTEXT (msg, [cT], [], [], NONE);
    val c = Sign.certify_class thy raw_c;
    val Cterm {t = prop, maxidx, sorts, ...} = global_cterm_of thy (Logic.mk_of_class (T, c));
  in
    if Sign.of_sort thy (T, [c]) then
      Thm (deriv_rule0 (fn () => Proofterm.PClass (T, c)),
       {cert = cert,
        tags = [],
        maxidx = maxidx,
        constraints = insert_constraints thy (T, [c]) [],
        shyps = sorts,
        hyps = [],
        tpairs = [],
        prop = prop})
    else raise THM ("of_class: type not of class " ^ Syntax.string_of_sort_global thy [c], 0, [])
  end |> solve_constraints;

(*Internalize sort constraints of type variables*)
val unconstrainT =
  strip_shyps #> (fn thm as Thm (der, args) =>
    let
      val Deriv {promises, body} = der;
      val {cert, shyps, hyps, tpairs, prop, ...} = args;
      val thy = theory_of_thm thm;

      fun err msg = raise THM ("unconstrainT: " ^ msg, 0, [thm]);
      val _ = null hyps orelse err "bad hyps";
      val _ = null tpairs orelse err "bad flex-flex constraints";
      val tfrees = build_rev (Term.add_tfree_names prop);
      val _ = null tfrees orelse err ("illegal free type variables " ^ commas_quote tfrees);

      val ps = map (apsnd (Future.map fulfill_body)) promises;
      val (pthm, proof) =
        Proofterm.unconstrain_thm_proof thy (classrel_proof thy) (arity_proof thy)
          shyps prop ps body;
      val der' = make_deriv [] [] [pthm] proof;
      val prop' = Proofterm.thm_node_prop (#2 pthm);
    in
      Thm (der',
       {cert = cert,
        tags = [],
        maxidx = maxidx_of_term prop',
        constraints = [],
        shyps = [[]],  (*potentially redundant*)
        hyps = [],
        tpairs = [],
        prop = prop'})
    end);

(*Replace all TFrees not fixed or in the hyps by new TVars*)
fun varifyT_global' fixed (Thm (der, {cert, maxidx, constraints, shyps, hyps, tpairs, prop, ...})) =
  let
    val tfrees = fold TFrees.add_tfrees hyps fixed;
    val prop1 = attach_tpairs tpairs prop;
    val (al, prop2) = Type.varify_global tfrees prop1;
    val (ts, prop3) = Logic.strip_prems (length tpairs, [], prop2);
  in
    (al, Thm (deriv_rule1 (Proofterm.varify_proof prop tfrees) der,
     {cert = cert,
      tags = [],
      maxidx = Int.max (0, maxidx),
      constraints = constraints,
      shyps = shyps,
      hyps = hyps,
      tpairs = rev (map Logic.dest_equals ts),
      prop = prop3}))
  end;

val varifyT_global = #2 o varifyT_global' TFrees.empty;

(*Replace all TVars by TFrees that are often new*)
fun legacy_freezeT (Thm (der, {cert, constraints, shyps, hyps, tpairs, prop, ...})) =
  let
    val prop1 = attach_tpairs tpairs prop;
    val prop2 = Type.legacy_freeze prop1;
    val (ts, prop3) = Logic.strip_prems (length tpairs, [], prop2);
  in
    Thm (deriv_rule1 (Proofterm.legacy_freezeT prop1) der,
     {cert = cert,
      tags = [],
      maxidx = maxidx_of_term prop2,
      constraints = constraints,
      shyps = shyps,
      hyps = hyps,
      tpairs = rev (map Logic.dest_equals ts),
      prop = prop3})
  end;

fun plain_prop_of raw_thm =
  let
    val thm = strip_shyps raw_thm;
    fun err msg = raise THM ("plain_prop_of: " ^ msg, 0, [thm]);
  in
    if not (null (hyps_of thm)) then
      err "theorem may not contain hypotheses"
    else if not (null (extra_shyps thm)) then
      err "theorem may not contain sort hypotheses"
    else if not (null (tpairs_of thm)) then
      err "theorem may not contain flex-flex pairs"
    else prop_of thm
  end;



(*** Inference rules for tactics ***)

(*Destruct proof state into constraints, other goals, goal(i), rest *)
fun dest_state (state as Thm (_, {prop,tpairs,...}), i) =
  (case  Logic.strip_prems(i, [], prop) of
      (B::rBs, C) => (tpairs, rev rBs, B, C)
    | _ => raise THM("dest_state", i, [state]))
  handle TERM _ => raise THM("dest_state", i, [state]);

(*Prepare orule for resolution by lifting it over the parameters and
assumptions of goal.*)
fun lift_rule goal orule =
  let
    val Cterm {t = gprop, T, maxidx = gmax, sorts, ...} = goal;
    val inc = gmax + 1;
    val lift_abs = Logic.lift_abs inc gprop;
    val lift_all = Logic.lift_all inc gprop;
    val Thm (der, {maxidx, constraints, shyps, hyps, tpairs, prop, ...}) = orule;
    val (As, B) = Logic.strip_horn prop;
  in
    if T <> propT then raise THM ("lift_rule: the term must have type prop", 0, [])
    else
      Thm (deriv_rule1 (Proofterm.lift_proof gprop inc prop) der,
       {cert = join_certificate1 (goal, orule),
        tags = [],
        maxidx = maxidx + inc,
        constraints = constraints,
        shyps = Sorts.union shyps sorts,  (*sic!*)
        hyps = hyps,
        tpairs = map (apply2 lift_abs) tpairs,
        prop = Logic.list_implies (map lift_all As, lift_all B)})
  end;

fun incr_indexes i (thm as Thm (der, {cert, maxidx, constraints, shyps, hyps, tpairs, prop, ...})) =
  if i < 0 then raise THM ("negative increment", 0, [thm])
  else if i = 0 then thm
  else
    Thm (deriv_rule1 (Proofterm.incr_indexes i) der,
     {cert = cert,
      tags = [],
      maxidx = maxidx + i,
      constraints = constraints,
      shyps = shyps,
      hyps = hyps,
      tpairs = map (apply2 (Logic.incr_indexes ([], [], i))) tpairs,
      prop = Logic.incr_indexes ([], [], i) prop});

(*Solve subgoal Bi of proof state B1...Bn/C by assumption. *)
fun assumption opt_ctxt i state =
  let
    val Thm (der, {cert, maxidx, constraints, shyps, hyps, ...}) = state;
    val (context, cert') = make_context_certificate [state] opt_ctxt cert;
    val (tpairs, Bs, Bi, C) = dest_state (state, i);
    fun newth n (env, tpairs) =
      let
        val normt = Envir.norm_term env;
        fun assumption_proof prf =
          Proofterm.assumption_proof (map normt Bs) (normt Bi) n prf;
      in
        Thm (deriv_rule1
          (assumption_proof #> not (Envir.is_empty env) ? Proofterm.norm_proof' env) der,
         {tags = [],
          maxidx = Envir.maxidx_of env,
          constraints = insert_constraints_env (Context.certificate_theory cert') env constraints,
          shyps = Envir.insert_sorts env shyps,
          hyps = hyps,
          tpairs = if Envir.is_empty env then tpairs else map (apply2 normt) tpairs,
          prop =
            if Envir.is_empty env then Logic.list_implies (Bs, C) (*avoid wasted normalizations*)
            else normt (Logic.list_implies (Bs, C)) (*normalize the new rule fully*),
          cert = cert'})
      end;

    val (close, asms, concl) = Logic.assum_problems (~1, Bi);
    val concl' = close concl;
    fun addprfs [] _ = Seq.empty
      | addprfs (asm :: rest) n = Seq.make (fn () => Seq.pull
          (Seq.mapp (newth n)
            (if Term.could_unify (asm, concl) then
              (Unify.unifiers (context, Envir.empty maxidx, (close asm, concl') :: tpairs))
             else Seq.empty)
            (addprfs rest (n + 1))))
  in addprfs asms 1 end;

(*Solve subgoal Bi of proof state B1...Bn/C by assumption.
  Checks if Bi's conclusion is alpha/eta-convertible to one of its assumptions*)
fun eq_assumption i state =
  let
    val Thm (der, {cert, maxidx, constraints, shyps, hyps, ...}) = state;
    val (tpairs, Bs, Bi, C) = dest_state (state, i);
    val (_, asms, concl) = Logic.assum_problems (~1, Bi);
  in
    (case find_index (fn asm => Envir.aeconv (asm, concl)) asms of
      ~1 => raise THM ("eq_assumption", 0, [state])
    | n =>
        Thm (deriv_rule1 (Proofterm.assumption_proof Bs Bi (n + 1)) der,
         {cert = cert,
          tags = [],
          maxidx = maxidx,
          constraints = constraints,
          shyps = shyps,
          hyps = hyps,
          tpairs = tpairs,
          prop = Logic.list_implies (Bs, C)}))
  end;


(*For rotate_tac: fast rotation of assumptions of subgoal i*)
fun rotate_rule k i state =
  let
    val Thm (der, {cert, maxidx, constraints, shyps, hyps, ...}) = state;
    val (tpairs, Bs, Bi, C) = dest_state (state, i);
    val params = Term.strip_all_vars Bi;
    val rest = Term.strip_all_body Bi;
    val asms = Logic.strip_imp_prems rest
    val concl = Logic.strip_imp_concl rest;
    val n = length asms;
    val m = if k < 0 then n + k else k;
    val Bi' =
      if 0 = m orelse m = n then Bi
      else if 0 < m andalso m < n then
        let val (ps, qs) = chop m asms
        in Logic.list_all (params, Logic.list_implies (qs @ ps, concl)) end
      else raise THM ("rotate_rule", k, [state]);
  in
    Thm (deriv_rule1 (Proofterm.rotate_proof Bs Bi' params asms m) der,
     {cert = cert,
      tags = [],
      maxidx = maxidx,
      constraints = constraints,
      shyps = shyps,
      hyps = hyps,
      tpairs = tpairs,
      prop = Logic.list_implies (Bs @ [Bi'], C)})
  end;


(*Rotates a rule's premises to the left by k, leaving the first j premises
  unchanged.  Does nothing if k=0 or if k equals n-j, where n is the
  number of premises.  Useful with eresolve_tac and underlies defer_tac*)
fun permute_prems j k rl =
  let
    val Thm (der, {cert, maxidx, constraints, shyps, hyps, tpairs, prop, ...}) = rl;
    val prems = Logic.strip_imp_prems prop
    and concl = Logic.strip_imp_concl prop;
    val moved_prems = List.drop (prems, j)
    and fixed_prems = List.take (prems, j)
      handle General.Subscript => raise THM ("permute_prems: j", j, [rl]);
    val n_j = length moved_prems;
    val m = if k < 0 then n_j + k else k;
    val (prems', prop') =
      if 0 = m orelse m = n_j then (prems, prop)
      else if 0 < m andalso m < n_j then
        let
          val (ps, qs) = chop m moved_prems;
          val prems' = fixed_prems @ qs @ ps;
        in (prems', Logic.list_implies (prems', concl)) end
      else raise THM ("permute_prems: k", k, [rl]);
  in
    Thm (deriv_rule1 (Proofterm.permute_prems_proof prems' j m) der,
     {cert = cert,
      tags = [],
      maxidx = maxidx,
      constraints = constraints,
      shyps = shyps,
      hyps = hyps,
      tpairs = tpairs,
      prop = prop'})
  end;


(* strip_apply f B A strips off all assumptions/parameters from A
   introduced by lifting over B, and applies f to remaining part of A*)
fun strip_apply f =
  let fun strip (Const ("Pure.imp", _) $ _  $ B1)
                (Const ("Pure.imp", _) $ A2 $ B2) = Logic.mk_implies (A2, strip B1 B2)
        | strip ((c as Const ("Pure.all", _)) $ Abs (_, _, t1))
                (      Const ("Pure.all", _)  $ Abs (a, T, t2)) = c $ Abs (a, T, strip t1 t2)
        | strip _ A = f A
  in strip end;

fun strip_lifted (Const ("Pure.imp", _) $ _ $ B1)
                 (Const ("Pure.imp", _) $ _ $ B2) = strip_lifted B1 B2
  | strip_lifted (Const ("Pure.all", _) $ Abs (_, _, t1))
                 (Const ("Pure.all", _) $ Abs (_, _, t2)) = strip_lifted t1 t2
  | strip_lifted _ A = A;

(*Use the alist to rename all bound variables and some unknowns in a term
  dpairs = current disagreement pairs;  tpairs = permanent ones (flexflex);
  Preserves unknowns in tpairs and on lhs of dpairs. *)
fun rename_bvs [] _ _ _ _ = K I
  | rename_bvs al dpairs tpairs B As =
      let
        val add_var = fold_aterms (fn Var ((x, _), _) => insert (op =) x | _ => I);
        val vids = []
          |> fold (add_var o fst) dpairs
          |> fold (add_var o fst) tpairs
          |> fold (add_var o snd) tpairs;
        val vids' = fold (add_var o strip_lifted B) As [];
        (*unknowns appearing elsewhere be preserved!*)
        val al' = distinct ((op =) o apply2 fst)
          (filter_out (fn (x, y) =>
             not (member (op =) vids' x) orelse
             member (op =) vids x orelse member (op =) vids y) al);
        val unchanged = filter_out (AList.defined (op =) al') vids';
        fun del_clashing clash xs _ [] qs =
              if clash then del_clashing false xs xs qs [] else qs
          | del_clashing clash xs ys ((p as (x, y)) :: ps) qs =
              if member (op =) ys y
              then del_clashing true (x :: xs) (x :: ys) ps qs
              else del_clashing clash xs (y :: ys) ps (p :: qs);
        val al'' = del_clashing false unchanged unchanged al' [];
        fun rename (t as Var ((x, i), T)) =
              (case AList.lookup (op =) al'' x of
                 SOME y => Var ((y, i), T)
               | NONE => t)
          | rename (Abs (x, T, t)) =
              Abs (the_default x (AList.lookup (op =) al x), T, rename t)
          | rename (f $ t) = rename f $ rename t
          | rename t = t;
        fun strip_ren f Ai = f rename B Ai
      in strip_ren end;

(*Function to rename bounds/unknowns in the argument, lifted over B*)
fun rename_bvars dpairs =
  rename_bvs (fold_rev Term.match_bvars dpairs []) dpairs;



(*** RESOLUTION ***)

(** Lifting optimizations **)

(*strip off pairs of assumptions/parameters in parallel -- they are
  identical because of lifting*)
fun strip_assums2 (Const("Pure.imp", _) $ _ $ B1,
                   Const("Pure.imp", _) $ _ $ B2) = strip_assums2 (B1,B2)
  | strip_assums2 (Const("Pure.all",_)$Abs(a,T,t1),
                   Const("Pure.all",_)$Abs(_,_,t2)) =
      let val (B1,B2) = strip_assums2 (t1,t2)
      in  (Abs(a,T,B1), Abs(a,T,B2))  end
  | strip_assums2 BB = BB;


(*Faster normalization: skip assumptions that were lifted over*)
fun norm_term_skip env 0 t = Envir.norm_term env t
  | norm_term_skip env n (Const ("Pure.all", _) $ Abs (a, T, t)) =
      let
        val T' = Envir.norm_type (Envir.type_env env) T
        (*Must instantiate types of parameters because they are flattened;
          this could be a NEW parameter*)
      in Logic.all_const T' $ Abs (a, T', norm_term_skip env n t) end
  | norm_term_skip env n (Const ("Pure.imp", _) $ A $ B) =
      Logic.mk_implies (A, norm_term_skip env (n - 1) B)
  | norm_term_skip _ _ _ = error "norm_term_skip: too few assumptions??";


(*unify types of schematic variables (non-lifted case)*)
fun unify_var_types context (th1, th2) env =
  let
    fun unify_vars (T :: Us) = fold (fn U => Pattern.unify_types context (T, U)) Us
      | unify_vars _ = I;
    val add_vars =
      full_prop_of #>
      fold_aterms (fn Var v => Vartab.insert_list (op =) v | _ => I);
    val vars = Vartab.build (add_vars th1 #> add_vars th2);
  in SOME (Vartab.fold (unify_vars o #2) vars env) end
  handle Pattern.Unif => NONE;

(*Composition of object rule r=(A1...Am/B) with proof state s=(B1...Bn/C)
  Unifies B with Bi, replacing subgoal i    (1 <= i <= n)
  If match then forbid instantiations in proof state
  If lifted then shorten the dpair using strip_assums2.
  If eres_flg then simultaneously proves A1 by assumption.
  nsubgoal is the number of new subgoals (written m above).
  Curried so that resolution calls dest_state only once.
*)
local exception COMPOSE
in
fun bicompose_aux opt_ctxt {flatten, match, incremented} (state, (stpairs, Bs, Bi, C), lifted)
                        (eres_flg, orule, nsubgoal) =
 let val Thm (sder, {maxidx=smax, constraints = constraints2, shyps = shyps2, hyps = hyps2, ...}) = state
     and Thm (rder, {maxidx=rmax, constraints = constraints1, shyps = shyps1, hyps = hyps1,
             tpairs=rtpairs, prop=rprop,...}) = orule
         (*How many hyps to skip over during normalization*)
     and nlift = Logic.count_prems (strip_all_body Bi) + (if eres_flg then ~1 else 0)
     val (context, cert) =
       make_context_certificate [state, orule] opt_ctxt (join_certificate2 (state, orule));
     (*Add new theorem with prop = "\<lbrakk>Bs; As\<rbrakk> \<Longrightarrow> C" to thq*)
     fun addth A (As, oldAs, rder', n) ((env, tpairs), thq) =
       let val normt = Envir.norm_term env;
           (*perform minimal copying here by examining env*)
           val (ntpairs, normp) =
             if Envir.is_empty env then (tpairs, (Bs @ As, C))
             else
             let val ntps = map (apply2 normt) tpairs
             in if Envir.above env smax then
                  (*no assignments in state; normalize the rule only*)
                  if lifted
                  then (ntps, (Bs @ map (norm_term_skip env nlift) As, C))
                  else (ntps, (Bs @ map normt As, C))
                else if match then raise COMPOSE
                else (*normalize the new rule fully*)
                  (ntps, (map normt (Bs @ As), normt C))
             end
           val constraints' =
             union_constraints constraints1 constraints2
             |> insert_constraints_env (Context.certificate_theory cert) env;
           fun bicompose_proof prf1 prf2 =
             Proofterm.bicompose_proof flatten (map normt Bs) (map normt As) A oldAs n (nlift+1)
               prf1 prf2
           val th =
             Thm (deriv_rule2
                   (if Envir.is_empty env then bicompose_proof
                    else if Envir.above env smax then bicompose_proof o Proofterm.norm_proof' env
                    else Proofterm.norm_proof' env oo bicompose_proof) rder' sder,
                {tags = [],
                 maxidx = Envir.maxidx_of env,
                 constraints = constraints',
                 shyps = Envir.insert_sorts env (Sorts.union shyps1 shyps2),
                 hyps = union_hyps hyps1 hyps2,
                 tpairs = ntpairs,
                 prop = Logic.list_implies normp,
                 cert = cert})
        in  Seq.cons th thq  end  handle COMPOSE => thq;
     val (rAs,B) = Logic.strip_prems(nsubgoal, [], rprop)
       handle TERM _ => raise THM("bicompose: rule", 0, [orule,state]);
     (*Modify assumptions, deleting n-th if n>0 for e-resolution*)
     fun newAs(As0, n, dpairs, tpairs) =
       let val (As1, rder') =
         if not lifted then (As0, rder)
         else
           let val rename = rename_bvars dpairs tpairs B As0
           in (map (rename strip_apply) As0,
             deriv_rule1 (Proofterm.map_proof_terms (rename K) I) rder)
           end;
       in (map (if flatten then (Logic.flatten_params n) else I) As1, As1, rder', n)
          handle TERM _ =>
          raise THM("bicompose: 1st premise", 0, [orule])
       end;
     val BBi = if lifted then strip_assums2(B,Bi) else (B,Bi);
     val dpairs = BBi :: (rtpairs@stpairs);

     (*elim-resolution: try each assumption in turn*)
     fun eres _ [] = raise THM ("bicompose: no premises", 0, [orule, state])
       | eres env (A1 :: As) =
           let
             val A = SOME A1;
             val (close, asms, concl) = Logic.assum_problems (nlift + 1, A1);
             val concl' = close concl;
             fun tryasms [] _ = Seq.empty
               | tryasms (asm :: rest) n =
                   if Term.could_unify (asm, concl) then
                     let val asm' = close asm in
                       (case Seq.pull (Unify.unifiers (context, env, (asm', concl') :: dpairs)) of
                         NONE => tryasms rest (n + 1)
                       | cell as SOME ((_, tpairs), _) =>
                           Seq.it_right (addth A (newAs (As, n, [BBi, (concl', asm')], tpairs)))
                             (Seq.make (fn () => cell),
                              Seq.make (fn () => Seq.pull (tryasms rest (n + 1)))))
                     end
                   else tryasms rest (n + 1);
           in tryasms asms 1 end;

     (*ordinary resolution*)
     fun res env =
       (case Seq.pull (Unify.unifiers (context, env, dpairs)) of
         NONE => Seq.empty
       | cell as SOME ((_, tpairs), _) =>
           Seq.it_right (addth NONE (newAs (rev rAs, 0, [BBi], tpairs)))
             (Seq.make (fn () => cell), Seq.empty));

     val env0 = Envir.empty (Int.max (rmax, smax));
 in
   (case if incremented then SOME env0 else unify_var_types context (state, orule) env0 of
     NONE => Seq.empty
   | SOME env => if eres_flg then eres env (rev rAs) else res env)
 end;
end;

fun bicompose opt_ctxt flags arg i state =
  bicompose_aux opt_ctxt flags (state, dest_state (state,i), false) arg;

(*Quick test whether rule is resolvable with the subgoal with hyps Hs
  and conclusion B.  If eres_flg then checks 1st premise of rule also*)
fun could_bires (Hs, B, eres_flg, rule) =
    let fun could_reshyp (A1::_) = exists (fn H => Term.could_unify (A1, H)) Hs
          | could_reshyp [] = false;  (*no premise -- illegal*)
    in  Term.could_unify(concl_of rule, B) andalso
        (not eres_flg  orelse  could_reshyp (prems_of rule))
    end;

(*Bi-resolution of a state with a list of (flag,rule) pairs.
  Puts the rule above:  rule/state.  Renames vars in the rules. *)
fun biresolution opt_ctxt match brules i state =
    let val (stpairs, Bs, Bi, C) = dest_state(state,i);
        val lift = lift_rule (cprem_of state i);
        val B = Logic.strip_assums_concl Bi;
        val Hs = Logic.strip_assums_hyp Bi;
        val compose =
          bicompose_aux opt_ctxt {flatten = true, match = match, incremented = true}
            (state, (stpairs, Bs, Bi, C), true);
        fun res [] = Seq.empty
          | res ((eres_flg, rule)::brules) =
              if Config.get_generic (make_context [state] opt_ctxt (cert_of state))
                  Pattern.unify_trace_failure orelse could_bires (Hs, B, eres_flg, rule)
              then Seq.make (*delay processing remainder till needed*)
                  (fn()=> SOME(compose (eres_flg, lift rule, nprems_of rule),
                               res brules))
              else res brules
    in  Seq.flat (res brules)  end;

(*Resolution: exactly one resolvent must be produced*)
fun tha RSN (i, thb) =
  (case Seq.chop 2 (biresolution NONE false [(false, tha)] i thb) of
    ([th], _) => solve_constraints th
  | ([], _) => raise THM ("RSN: no unifiers", i, [tha, thb])
  | _ => raise THM ("RSN: multiple unifiers", i, [tha, thb]));

(*Resolution: P \<Longrightarrow> Q, Q \<Longrightarrow> R gives P \<Longrightarrow> R*)
fun tha RS thb = tha RSN (1,thb);



(**** Type classes ****)

fun standard_tvars thm =
  let
    val thy = theory_of_thm thm;
    val tvars = build_rev (Term.add_tvars (prop_of thm));
    val names = Name.invent Name.context Name.aT (length tvars);
    val tinst =
      map2 (fn (ai, S) => fn b => ((ai, S), global_ctyp_of thy (TVar ((b, 0), S)))) tvars names;
  in instantiate (TVars.make tinst, Vars.empty) thm end


(* class relations *)

val is_classrel = Symreltab.defined o get_classrels;

fun complete_classrels thy =
  let
    fun complete (c, (_, (all_preds, all_succs))) (finished1, thy1) =
      let
        fun compl c1 c2 (finished2, thy2) =
          if is_classrel thy2 (c1, c2) then (finished2, thy2)
          else
            (false,
              thy2
              |> (map_classrels o Symreltab.update) ((c1, c2),
                (the_classrel thy2 (c1, c) RS the_classrel thy2 (c, c2))
                |> standard_tvars
                |> close_derivation \<^here>
                |> tap (expose_proof thy2)
                |> trim_context));

        val proven = is_classrel thy1;
        val preds = Graph.Keys.fold (fn c1 => proven (c1, c) ? cons c1) all_preds [];
        val succs = Graph.Keys.fold (fn c2 => proven (c, c2) ? cons c2) all_succs [];
      in
        fold_product compl preds succs (finished1, thy1)
      end;
  in
    (case Graph.fold complete (Sorts.classes_of (Sign.classes_of thy)) (true, thy) of
      (true, _) => NONE
    | (_, thy') => SOME thy')
  end;


(* type arities *)

fun thynames_of_arity thy (a, c) =
  build (get_arities thy |> Aritytab.fold
    (fn ((a', _, c'), (_, name, ser)) => (a = a' andalso c = c') ? cons (name, ser)))
  |> sort (int_ord o apply2 #2) |> map #1;

fun insert_arity_completions thy ((t, Ss, c), (th, thy_name, ser)) (finished, arities) =
  let
    val completions =
      Sign.super_classes thy c |> map_filter (fn c1 =>
        if Aritytab.defined arities (t, Ss, c1) then NONE
        else
          let
            val th1 =
              (th RS the_classrel thy (c, c1))
              |> standard_tvars
              |> close_derivation \<^here>
              |> tap (expose_proof thy)
              |> trim_context;
          in SOME ((t, Ss, c1), (th1, thy_name, ser)) end);
    val finished' = finished andalso null completions;
    val arities' = fold Aritytab.update completions arities;
  in (finished', arities') end;

fun complete_arities thy =
  let
    val arities = get_arities thy;
    val (finished, arities') =
      Aritytab.fold (insert_arity_completions thy) arities (true, get_arities thy);
  in
    if finished then NONE
    else SOME (map_arities (K arities') thy)
  end;

val _ =
  Theory.setup
   (Theory.at_begin complete_classrels #>
    Theory.at_begin complete_arities);


(* primitive rules *)

fun add_classrel raw_th thy =
  let
    val th = strip_shyps (transfer thy raw_th);
    val th' = th |> unconstrainT |> tap (expose_proof thy) |> trim_context;
    val prop = plain_prop_of th;
    val (c1, c2) = Logic.dest_classrel prop;
  in
    thy
    |> Sign.primitive_classrel (c1, c2)
    |> map_classrels (Symreltab.update ((c1, c2), th'))
    |> perhaps complete_classrels
    |> perhaps complete_arities
  end;

fun add_arity raw_th thy =
  let
    val th = strip_shyps (transfer thy raw_th);
    val th' = th |> unconstrainT |> tap (expose_proof thy) |> trim_context;
    val prop = plain_prop_of th;
    val (t, Ss, c) = Logic.dest_arity prop;
    val ar = ((t, Ss, c), (th', Context.theory_name thy, serial ()));
  in
    thy
    |> Sign.primitive_arity (t, Ss, [c])
    |> map_arities (Aritytab.update ar #> curry (insert_arity_completions thy ar) true #> #2)
  end;

end;

structure Basic_Thm: BASIC_THM = Thm;
open Basic_Thm;