(* Title: HOL/set
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1991 University of Cambridge
Set theory for higher-order logic. A set is simply a predicate.
*)
section "Relating predicates and sets";
Addsimps [Collect_mem_eq];
AddIffs [mem_Collect_eq];
Goal "P(a) ==> a : {x. P(x)}";
by (Asm_simp_tac 1);
qed "CollectI";
Goal "a : {x. P(x)} ==> P(a)";
by (Asm_full_simp_tac 1);
qed "CollectD";
bind_thm ("CollectE", make_elim CollectD);
val [prem] = Goal "[| !!x. (x:A) = (x:B) |] ==> A = B";
by (rtac (prem RS ext RS arg_cong RS box_equals) 1);
by (rtac Collect_mem_eq 1);
by (rtac Collect_mem_eq 1);
qed "set_ext";
val [prem] = Goal "[| !!x. P(x)=Q(x) |] ==> {x. P(x)} = {x. Q(x)}";
by (rtac (prem RS ext RS arg_cong) 1);
qed "Collect_cong";
val CollectE = make_elim CollectD;
AddSIs [CollectI];
AddSEs [CollectE];
section "Bounded quantifiers";
val prems = Goalw [Ball_def]
"[| !!x. x:A ==> P(x) |] ==> ! x:A. P(x)";
by (REPEAT (ares_tac (prems @ [allI,impI]) 1));
qed "ballI";
Goalw [Ball_def] "[| ! x:A. P(x); x:A |] ==> P(x)";
by (Blast_tac 1);
qed "bspec";
val major::prems = Goalw [Ball_def]
"[| ! x:A. P(x); P(x) ==> Q; x~:A ==> Q |] ==> Q";
by (rtac (major RS spec RS impCE) 1);
by (REPEAT (eresolve_tac prems 1));
qed "ballE";
(*Takes assumptions ! x:A.P(x) and a:A; creates assumption P(a)*)
fun ball_tac i = etac ballE i THEN contr_tac (i+1);
AddSIs [ballI];
AddEs [ballE];
AddXDs [bspec];
(* gives better instantiation for bound: *)
claset_ref() := claset() addWrapper ("bspec", fn tac2 =>
(dtac bspec THEN' atac) APPEND' tac2);
(*Normally the best argument order: P(x) constrains the choice of x:A*)
Goalw [Bex_def] "[| P(x); x:A |] ==> ? x:A. P(x)";
by (Blast_tac 1);
qed "bexI";
(*The best argument order when there is only one x:A*)
Goalw [Bex_def] "[| x:A; P(x) |] ==> ? x:A. P(x)";
by (Blast_tac 1);
qed "rev_bexI";
val prems = Goal
"[| ! x:A. ~P(x) ==> P(a); a:A |] ==> ? x:A. P(x)";
by (rtac classical 1);
by (REPEAT (ares_tac (prems@[bexI,ballI,notI,notE]) 1)) ;
qed "bexCI";
val major::prems = Goalw [Bex_def]
"[| ? x:A. P(x); !!x. [| x:A; P(x) |] ==> Q |] ==> Q";
by (rtac (major RS exE) 1);
by (REPEAT (eresolve_tac (prems @ [asm_rl,conjE]) 1));
qed "bexE";
AddIs [bexI];
AddSEs [bexE];
(*Trival rewrite rule*)
Goal "(! x:A. P) = ((? x. x:A) --> P)";
by (simp_tac (simpset() addsimps [Ball_def]) 1);
qed "ball_triv";
(*Dual form for existentials*)
Goal "(? x:A. P) = ((? x. x:A) & P)";
by (simp_tac (simpset() addsimps [Bex_def]) 1);
qed "bex_triv";
Addsimps [ball_triv, bex_triv];
(** Congruence rules **)
val prems = Goalw [Ball_def]
"[| A=B; !!x. x:B ==> P(x) = Q(x) |] ==> \
\ (! x:A. P(x)) = (! x:B. Q(x))";
by (asm_simp_tac (simpset() addsimps prems) 1);
qed "ball_cong";
val prems = Goalw [Bex_def]
"[| A=B; !!x. x:B ==> P(x) = Q(x) |] ==> \
\ (? x:A. P(x)) = (? x:B. Q(x))";
by (asm_simp_tac (simpset() addcongs [conj_cong] addsimps prems) 1);
qed "bex_cong";
Addcongs [ball_cong,bex_cong];
section "Subsets";
val prems = Goalw [subset_def] "(!!x. x:A ==> x:B) ==> A <= B";
by (REPEAT (ares_tac (prems @ [ballI]) 1));
qed "subsetI";
(*Map the type ('a set => anything) to just 'a.
For overloading constants whose first argument has type "'a set" *)
fun overload_1st_set s = Blast.overloaded (s, HOLogic.dest_setT o domain_type);
(*While (:) is not, its type must be kept
for overloading of = to work.*)
Blast.overloaded ("op :", domain_type);
overload_1st_set "Ball"; (*need UNION, INTER also?*)
overload_1st_set "Bex";
(*Image: retain the type of the set being expressed*)
Blast.overloaded ("op ``", domain_type);
(*Rule in Modus Ponens style*)
Goalw [subset_def] "[| A <= B; c:A |] ==> c:B";
by (Blast_tac 1);
qed "subsetD";
AddXIs [subsetD];
(*The same, with reversed premises for use with etac -- cf rev_mp*)
Goal "[| c:A; A <= B |] ==> c:B";
by (REPEAT (ares_tac [subsetD] 1)) ;
qed "rev_subsetD";
AddXIs [rev_subsetD];
(*Converts A<=B to x:A ==> x:B*)
fun impOfSubs th = th RSN (2, rev_subsetD);
Goal "[| A <= B; c ~: B |] ==> c ~: A";
by (REPEAT (eresolve_tac [asm_rl, contrapos, subsetD] 1)) ;
qed "contra_subsetD";
Goal "[| c ~: B; A <= B |] ==> c ~: A";
by (REPEAT (eresolve_tac [asm_rl, contrapos, subsetD] 1)) ;
qed "rev_contra_subsetD";
(*Classical elimination rule*)
val major::prems = Goalw [subset_def]
"[| A <= B; c~:A ==> P; c:B ==> P |] ==> P";
by (rtac (major RS ballE) 1);
by (REPEAT (eresolve_tac prems 1));
qed "subsetCE";
(*Takes assumptions A<=B; c:A and creates the assumption c:B *)
fun set_mp_tac i = etac subsetCE i THEN mp_tac i;
AddSIs [subsetI];
AddEs [subsetD, subsetCE];
Goal "A <= (A::'a set)";
by (Fast_tac 1);
qed "subset_refl"; (*Blast_tac would try order_refl and fail*)
Goal "[| A<=B; B<=C |] ==> A<=(C::'a set)";
by (Blast_tac 1);
qed "subset_trans";
section "Equality";
(*Anti-symmetry of the subset relation*)
Goal "[| A <= B; B <= A |] ==> A = (B::'a set)";
by (rtac set_ext 1);
by (blast_tac (claset() addIs [subsetD]) 1);
qed "subset_antisym";
val equalityI = subset_antisym;
AddSIs [equalityI];
(* Equality rules from ZF set theory -- are they appropriate here? *)
Goal "A = B ==> A<=(B::'a set)";
by (etac ssubst 1);
by (rtac subset_refl 1);
qed "equalityD1";
Goal "A = B ==> B<=(A::'a set)";
by (etac ssubst 1);
by (rtac subset_refl 1);
qed "equalityD2";
val prems = Goal
"[| A = B; [| A<=B; B<=(A::'a set) |] ==> P |] ==> P";
by (resolve_tac prems 1);
by (REPEAT (resolve_tac (prems RL [equalityD1,equalityD2]) 1));
qed "equalityE";
val major::prems = Goal
"[| A = B; [| c:A; c:B |] ==> P; [| c~:A; c~:B |] ==> P |] ==> P";
by (rtac (major RS equalityE) 1);
by (REPEAT (contr_tac 1 ORELSE eresolve_tac ([asm_rl,subsetCE]@prems) 1));
qed "equalityCE";
(*Lemma for creating induction formulae -- for "pattern matching" on p
To make the induction hypotheses usable, apply "spec" or "bspec" to
put universal quantifiers over the free variables in p. *)
val prems = Goal
"[| p:A; !!z. z:A ==> p=z --> R |] ==> R";
by (rtac mp 1);
by (REPEAT (resolve_tac (refl::prems) 1));
qed "setup_induction";
section "The universal set -- UNIV";
Goalw [UNIV_def] "x : UNIV";
by (rtac CollectI 1);
by (rtac TrueI 1);
qed "UNIV_I";
Addsimps [UNIV_I];
AddIs [UNIV_I]; (*unsafe makes it less likely to cause problems*)
Goal "A <= UNIV";
by (rtac subsetI 1);
by (rtac UNIV_I 1);
qed "subset_UNIV";
(** Eta-contracting these two rules (to remove P) causes them to be ignored
because of their interaction with congruence rules. **)
Goalw [Ball_def] "Ball UNIV P = All P";
by (Simp_tac 1);
qed "ball_UNIV";
Goalw [Bex_def] "Bex UNIV P = Ex P";
by (Simp_tac 1);
qed "bex_UNIV";
Addsimps [ball_UNIV, bex_UNIV];
section "The empty set -- {}";
Goalw [empty_def] "(c : {}) = False";
by (Blast_tac 1) ;
qed "empty_iff";
Addsimps [empty_iff];
Goal "a:{} ==> P";
by (Full_simp_tac 1);
qed "emptyE";
AddSEs [emptyE];
Goal "{} <= A";
by (Blast_tac 1) ;
qed "empty_subsetI";
(*One effect is to delete the ASSUMPTION {} <= A*)
AddIffs [empty_subsetI];
val [prem]= Goal "[| !!y. y:A ==> False |] ==> A={}";
by (blast_tac (claset() addIs [prem RS FalseE]) 1) ;
qed "equals0I";
(*Use for reasoning about disjointness: A Int B = {} *)
Goal "A={} ==> a ~: A";
by (Blast_tac 1) ;
qed "equals0D";
AddDs [equals0D, sym RS equals0D];
Goalw [Ball_def] "Ball {} P = True";
by (Simp_tac 1);
qed "ball_empty";
Goalw [Bex_def] "Bex {} P = False";
by (Simp_tac 1);
qed "bex_empty";
Addsimps [ball_empty, bex_empty];
Goal "UNIV ~= {}";
by (blast_tac (claset() addEs [equalityE]) 1);
qed "UNIV_not_empty";
AddIffs [UNIV_not_empty];
section "The Powerset operator -- Pow";
Goalw [Pow_def] "(A : Pow(B)) = (A <= B)";
by (Asm_simp_tac 1);
qed "Pow_iff";
AddIffs [Pow_iff];
Goalw [Pow_def] "A <= B ==> A : Pow(B)";
by (etac CollectI 1);
qed "PowI";
Goalw [Pow_def] "A : Pow(B) ==> A<=B";
by (etac CollectD 1);
qed "PowD";
val Pow_bottom = empty_subsetI RS PowI; (* {}: Pow(B) *)
val Pow_top = subset_refl RS PowI; (* A : Pow(A) *)
section "Set complement";
Goalw [Compl_def] "(c : -A) = (c~:A)";
by (Blast_tac 1);
qed "Compl_iff";
Addsimps [Compl_iff];
val prems = Goalw [Compl_def] "[| c:A ==> False |] ==> c : -A";
by (REPEAT (ares_tac (prems @ [CollectI,notI]) 1));
qed "ComplI";
(*This form, with negated conclusion, works well with the Classical prover.
Negated assumptions behave like formulae on the right side of the notional
turnstile...*)
Goalw [Compl_def] "c : -A ==> c~:A";
by (etac CollectD 1);
qed "ComplD";
val ComplE = make_elim ComplD;
AddSIs [ComplI];
AddSEs [ComplE];
section "Binary union -- Un";
Goalw [Un_def] "(c : A Un B) = (c:A | c:B)";
by (Blast_tac 1);
qed "Un_iff";
Addsimps [Un_iff];
Goal "c:A ==> c : A Un B";
by (Asm_simp_tac 1);
qed "UnI1";
Goal "c:B ==> c : A Un B";
by (Asm_simp_tac 1);
qed "UnI2";
(*Classical introduction rule: no commitment to A vs B*)
val prems = Goal "(c~:B ==> c:A) ==> c : A Un B";
by (Simp_tac 1);
by (REPEAT (ares_tac (prems@[disjCI]) 1)) ;
qed "UnCI";
val major::prems = Goalw [Un_def]
"[| c : A Un B; c:A ==> P; c:B ==> P |] ==> P";
by (rtac (major RS CollectD RS disjE) 1);
by (REPEAT (eresolve_tac prems 1));
qed "UnE";
AddSIs [UnCI];
AddSEs [UnE];
section "Binary intersection -- Int";
Goalw [Int_def] "(c : A Int B) = (c:A & c:B)";
by (Blast_tac 1);
qed "Int_iff";
Addsimps [Int_iff];
Goal "[| c:A; c:B |] ==> c : A Int B";
by (Asm_simp_tac 1);
qed "IntI";
Goal "c : A Int B ==> c:A";
by (Asm_full_simp_tac 1);
qed "IntD1";
Goal "c : A Int B ==> c:B";
by (Asm_full_simp_tac 1);
qed "IntD2";
val [major,minor] = Goal
"[| c : A Int B; [| c:A; c:B |] ==> P |] ==> P";
by (rtac minor 1);
by (rtac (major RS IntD1) 1);
by (rtac (major RS IntD2) 1);
qed "IntE";
AddSIs [IntI];
AddSEs [IntE];
section "Set difference";
Goalw [set_diff_def] "(c : A-B) = (c:A & c~:B)";
by (Blast_tac 1);
qed "Diff_iff";
Addsimps [Diff_iff];
Goal "[| c : A; c ~: B |] ==> c : A - B";
by (Asm_simp_tac 1) ;
qed "DiffI";
Goal "c : A - B ==> c : A";
by (Asm_full_simp_tac 1) ;
qed "DiffD1";
Goal "[| c : A - B; c : B |] ==> P";
by (Asm_full_simp_tac 1) ;
qed "DiffD2";
val prems = Goal "[| c : A - B; [| c:A; c~:B |] ==> P |] ==> P";
by (resolve_tac prems 1);
by (REPEAT (ares_tac (prems RL [DiffD1, DiffD2 RS notI]) 1)) ;
qed "DiffE";
AddSIs [DiffI];
AddSEs [DiffE];
section "Augmenting a set -- insert";
Goalw [insert_def] "a : insert b A = (a=b | a:A)";
by (Blast_tac 1);
qed "insert_iff";
Addsimps [insert_iff];
Goal "a : insert a B";
by (Simp_tac 1);
qed "insertI1";
Goal "!!a. a : B ==> a : insert b B";
by (Asm_simp_tac 1);
qed "insertI2";
val major::prems = Goalw [insert_def]
"[| a : insert b A; a=b ==> P; a:A ==> P |] ==> P";
by (rtac (major RS UnE) 1);
by (REPEAT (eresolve_tac (prems @ [CollectE]) 1));
qed "insertE";
(*Classical introduction rule*)
val prems = Goal "(a~:B ==> a=b) ==> a: insert b B";
by (Simp_tac 1);
by (REPEAT (ares_tac (prems@[disjCI]) 1)) ;
qed "insertCI";
AddSIs [insertCI];
AddSEs [insertE];
Goal "A <= insert x B ==> A <= B & x ~: A | (? B'. A = insert x B' & B' <= B)";
by (case_tac "x:A" 1);
by (Fast_tac 2);
by (rtac disjI2 1);
by (res_inst_tac [("x","A-{x}")] exI 1);
by (Fast_tac 1);
qed "subset_insertD";
section "Singletons, using insert";
Goal "a : {a}";
by (rtac insertI1 1) ;
qed "singletonI";
Goal "b : {a} ==> b=a";
by (Blast_tac 1);
qed "singletonD";
bind_thm ("singletonE", make_elim singletonD);
Goal "(b : {a}) = (b=a)";
by (Blast_tac 1);
qed "singleton_iff";
Goal "{a}={b} ==> a=b";
by (blast_tac (claset() addEs [equalityE]) 1);
qed "singleton_inject";
(*Redundant? But unlike insertCI, it proves the subgoal immediately!*)
AddSIs [singletonI];
AddSDs [singleton_inject];
AddSEs [singletonE];
Goal "{b} = insert a A = (a = b & A <= {b})";
by (safe_tac (claset() addSEs [equalityE]));
by (ALLGOALS Blast_tac);
qed "singleton_insert_inj_eq";
Goal "(insert a A = {b} ) = (a = b & A <= {b})";
by (rtac (singleton_insert_inj_eq RS (eq_sym_conv RS trans)) 1);
qed "singleton_insert_inj_eq'";
Goal "A <= {x} ==> A={} | A = {x}";
by (Fast_tac 1);
qed "subset_singletonD";
Goal "{x. x=a} = {a}";
by (Blast_tac 1);
qed "singleton_conv";
Addsimps [singleton_conv];
Goal "{x. a=x} = {a}";
by (Blast_tac 1);
qed "singleton_conv2";
Addsimps [singleton_conv2];
section "Unions of families -- UNION x:A. B(x) is Union(B``A)";
Goalw [UNION_def] "(b: (UN x:A. B(x))) = (EX x:A. b: B(x))";
by (Blast_tac 1);
qed "UN_iff";
Addsimps [UN_iff];
(*The order of the premises presupposes that A is rigid; b may be flexible*)
Goal "[| a:A; b: B(a) |] ==> b: (UN x:A. B(x))";
by Auto_tac;
qed "UN_I";
val major::prems = Goalw [UNION_def]
"[| b : (UN x:A. B(x)); !!x.[| x:A; b: B(x) |] ==> R |] ==> R";
by (rtac (major RS CollectD RS bexE) 1);
by (REPEAT (ares_tac prems 1));
qed "UN_E";
AddIs [UN_I];
AddSEs [UN_E];
val prems = Goalw [UNION_def]
"[| A=B; !!x. x:B ==> C(x) = D(x) |] ==> \
\ (UN x:A. C(x)) = (UN x:B. D(x))";
by (asm_simp_tac (simpset() addsimps prems) 1);
qed "UN_cong";
section "Intersections of families -- INTER x:A. B(x) is Inter(B``A)";
Goalw [INTER_def] "(b: (INT x:A. B(x))) = (ALL x:A. b: B(x))";
by Auto_tac;
qed "INT_iff";
Addsimps [INT_iff];
val prems = Goalw [INTER_def]
"(!!x. x:A ==> b: B(x)) ==> b : (INT x:A. B(x))";
by (REPEAT (ares_tac ([CollectI,ballI] @ prems) 1));
qed "INT_I";
Goal "[| b : (INT x:A. B(x)); a:A |] ==> b: B(a)";
by Auto_tac;
qed "INT_D";
(*"Classical" elimination -- by the Excluded Middle on a:A *)
val major::prems = Goalw [INTER_def]
"[| b : (INT x:A. B(x)); b: B(a) ==> R; a~:A ==> R |] ==> R";
by (rtac (major RS CollectD RS ballE) 1);
by (REPEAT (eresolve_tac prems 1));
qed "INT_E";
AddSIs [INT_I];
AddEs [INT_D, INT_E];
val prems = Goalw [INTER_def]
"[| A=B; !!x. x:B ==> C(x) = D(x) |] ==> \
\ (INT x:A. C(x)) = (INT x:B. D(x))";
by (asm_simp_tac (simpset() addsimps prems) 1);
qed "INT_cong";
section "Union";
Goalw [Union_def] "(A : Union(C)) = (EX X:C. A:X)";
by (Blast_tac 1);
qed "Union_iff";
Addsimps [Union_iff];
(*The order of the premises presupposes that C is rigid; A may be flexible*)
Goal "[| X:C; A:X |] ==> A : Union(C)";
by Auto_tac;
qed "UnionI";
val major::prems = Goalw [Union_def]
"[| A : Union(C); !!X.[| A:X; X:C |] ==> R |] ==> R";
by (rtac (major RS UN_E) 1);
by (REPEAT (ares_tac prems 1));
qed "UnionE";
AddIs [UnionI];
AddSEs [UnionE];
section "Inter";
Goalw [Inter_def] "(A : Inter(C)) = (ALL X:C. A:X)";
by (Blast_tac 1);
qed "Inter_iff";
Addsimps [Inter_iff];
val prems = Goalw [Inter_def]
"[| !!X. X:C ==> A:X |] ==> A : Inter(C)";
by (REPEAT (ares_tac ([INT_I] @ prems) 1));
qed "InterI";
(*A "destruct" rule -- every X in C contains A as an element, but
A:X can hold when X:C does not! This rule is analogous to "spec". *)
Goal "[| A : Inter(C); X:C |] ==> A:X";
by Auto_tac;
qed "InterD";
(*"Classical" elimination rule -- does not require proving X:C *)
val major::prems = Goalw [Inter_def]
"[| A : Inter(C); X~:C ==> R; A:X ==> R |] ==> R";
by (rtac (major RS INT_E) 1);
by (REPEAT (eresolve_tac prems 1));
qed "InterE";
AddSIs [InterI];
AddEs [InterD, InterE];
(*** Image of a set under a function ***)
(*Frequently b does not have the syntactic form of f(x).*)
Goalw [image_def] "[| b=f(x); x:A |] ==> b : f``A";
by (Blast_tac 1);
qed "image_eqI";
Addsimps [image_eqI];
bind_thm ("imageI", refl RS image_eqI);
(*The eta-expansion gives variable-name preservation.*)
val major::prems = Goalw [image_def]
"[| b : (%x. f(x))``A; !!x.[| b=f(x); x:A |] ==> P |] ==> P";
by (rtac (major RS CollectD RS bexE) 1);
by (REPEAT (ares_tac prems 1));
qed "imageE";
AddIs [image_eqI];
AddSEs [imageE];
Goal "f``(A Un B) = f``A Un f``B";
by (Blast_tac 1);
qed "image_Un";
Goal "(z : f``A) = (EX x:A. z = f x)";
by (Blast_tac 1);
qed "image_iff";
(*This rewrite rule would confuse users if made default.*)
Goal "(f``A <= B) = (ALL x:A. f(x): B)";
by (Blast_tac 1);
qed "image_subset_iff";
(*Replaces the three steps subsetI, imageE, hyp_subst_tac, but breaks too
many existing proofs.*)
val prems = Goal "(!!x. x:A ==> f(x) : B) ==> f``A <= B";
by (blast_tac (claset() addIs prems) 1);
qed "image_subsetI";
(*** Range of a function -- just a translation for image! ***)
Goal "b=f(x) ==> b : range(f)";
by (EVERY1 [etac image_eqI, rtac UNIV_I]);
bind_thm ("range_eqI", UNIV_I RSN (2,image_eqI));
bind_thm ("rangeI", UNIV_I RS imageI);
val [major,minor] = Goal
"[| b : range(%x. f(x)); !!x. b=f(x) ==> P |] ==> P";
by (rtac (major RS imageE) 1);
by (etac minor 1);
qed "rangeE";
(*** Set reasoning tools ***)
(** Rewrite rules for boolean case-splitting: faster than
addsplits[split_if]
**)
bind_thm ("split_if_eq1", read_instantiate [("P", "%x. x = ?b")] split_if);
bind_thm ("split_if_eq2", read_instantiate [("P", "%x. ?a = x")] split_if);
(*Split ifs on either side of the membership relation.
Not for Addsimps -- can cause goals to blow up!*)
bind_thm ("split_if_mem1",
read_instantiate_sg (Theory.sign_of Set.thy) [("P", "%x. x : ?b")] split_if);
bind_thm ("split_if_mem2",
read_instantiate_sg (Theory.sign_of Set.thy) [("P", "%x. ?a : x")] split_if);
val split_ifs = [if_bool_eq_conj, split_if_eq1, split_if_eq2,
split_if_mem1, split_if_mem2];
(*Each of these has ALREADY been added to simpset() above.*)
val mem_simps = [insert_iff, empty_iff, Un_iff, Int_iff, Compl_iff, Diff_iff,
mem_Collect_eq, UN_iff, Union_iff, INT_iff, Inter_iff];
val mksimps_pairs = ("Ball",[bspec]) :: mksimps_pairs;
simpset_ref() := simpset() setmksimps (mksimps mksimps_pairs);
Addsimps[subset_UNIV, subset_refl];
(*** < ***)
Goalw [psubset_def] "!!A::'a set. [| A <= B; A ~= B |] ==> A<B";
by (Blast_tac 1);
qed "psubsetI";
AddXIs [psubsetI];
Goalw [psubset_def] "A < insert x B ==> (x ~: A) & A<=B | x:A & A-{x}<B";
by Auto_tac;
qed "psubset_insertD";
bind_thm ("psubset_eq", psubset_def RS meta_eq_to_obj_eq);
bind_thm ("psubset_imp_subset", psubset_eq RS iffD1 RS conjunct1);
Goal"[| (A::'a set) < B; B <= C |] ==> A < C";
by (auto_tac (claset(), simpset() addsimps [psubset_eq]));
qed "psubset_subset_trans";
Goal"[| (A::'a set) <= B; B < C|] ==> A < C";
by (auto_tac (claset(), simpset() addsimps [psubset_eq]));
qed "subset_psubset_trans";
(* attributes *)
local
fun gen_rulify_prems x =
Attrib.no_args (Drule.rule_attribute (fn _ => (standard o
rule_by_tactic (REPEAT (ALLGOALS (resolve_tac [allI, ballI, impI])))))) x;
in
val rulify_prems_attrib_setup =
[Attrib.add_attributes
[("rulify_prems", (gen_rulify_prems, gen_rulify_prems), "put theorem into standard rule form")]];
end;