(* Title: Subst/AList.ML
ID: $Id$
Author: Martin Coen, Cambridge University Computer Laboratory
Copyright 1993 University of Cambridge
Association lists.
*)
open AList;
let fun prove s = prove_goalw AList.thy [alist_rec_def,assoc_def] s
(fn _ => [Simp_tac 1])
in
Addsimps
(
map prove
["alist_rec [] c d = c",
"alist_rec ((a,b)#al) c d = d a b al (alist_rec al c d)",
"assoc v d [] = d",
"assoc v d ((a,b)#al) = (if v=a then b else assoc v d al)"]
)
end;
val prems = goal AList.thy
"[| P([]); \
\ !!x y xs. P(xs) ==> P((x,y)#xs) |] ==> P(l)";
by (induct_tac "l" 1);
by (split_all_tac 2);
by (REPEAT (ares_tac prems 1));
qed "alist_induct";
(*Perform induction on xs. *)
fun alist_ind_tac a M =
EVERY [res_inst_tac [("l",a)] alist_induct M,
rename_last_tac a ["1"] (M+1)];