(* Title: FOLP/FOLP.ML
ID: $Id$
Author: Martin D Coen, Cambridge University Computer Laboratory
Copyright 1991 University of Cambridge
Tactics and lemmas for FOLP (Classical First-Order Logic with Proofs)
*)
(*** Classical introduction rules for | and EX ***)
val prems= goal FOLP.thy
"(!!x. x:~Q ==> f(x):P) ==> ?p : P|Q";
by (rtac classical 1);
by (REPEAT (ares_tac (prems@[disjI1,notI]) 1));
by (REPEAT (ares_tac (prems@[disjI2,notE]) 1)) ;
qed "disjCI";
(*introduction rule involving only EX*)
val prems= goal FOLP.thy
"( !!u. u:~(EX x. P(x)) ==> f(u):P(a)) ==> ?p : EX x. P(x)";
by (rtac classical 1);
by (eresolve_tac (prems RL [exI]) 1) ;
qed "ex_classical";
(*version of above, simplifying ~EX to ALL~ *)
val [prem]= goal FOLP.thy
"(!!u. u:ALL x. ~P(x) ==> f(u):P(a)) ==> ?p : EX x. P(x)";
by (rtac ex_classical 1);
by (resolve_tac [notI RS allI RS prem] 1);
by (etac notE 1);
by (etac exI 1) ;
qed "exCI";
val excluded_middle = prove_goal FOLP.thy "?p : ~P | P"
(fn _=> [ rtac disjCI 1, assume_tac 1 ]);
(*** Special elimination rules *)
(*Classical implies (-->) elimination. *)
val major::prems= goal FOLP.thy
"[| p:P-->Q; !!x. x:~P ==> f(x):R; !!y. y:Q ==> g(y):R |] ==> ?p : R";
by (resolve_tac [excluded_middle RS disjE] 1);
by (DEPTH_SOLVE (ares_tac (prems@[major RS mp]) 1)) ;
qed "impCE";
(*Double negation law*)
Goal "p:~~P ==> ?p : P";
by (rtac classical 1);
by (etac notE 1);
by (assume_tac 1);
qed "notnotD";
(*** Tactics for implication and contradiction ***)
(*Classical <-> elimination. Proof substitutes P=Q in
~P ==> ~Q and P ==> Q *)
val prems = goalw FOLP.thy [iff_def]
"[| p:P<->Q; !!x y.[| x:P; y:Q |] ==> f(x,y):R; \
\ !!x y.[| x:~P; y:~Q |] ==> g(x,y):R |] ==> ?p : R";
by (rtac conjE 1);
by (REPEAT (DEPTH_SOLVE_1 (etac impCE 1
ORELSE mp_tac 1 ORELSE ares_tac prems 1))) ;
qed "iffCE";
(*Should be used as swap since ~P becomes redundant*)
val major::prems= goal FOLP.thy
"p:~P ==> (!!x. x:~Q ==> f(x):P) ==> ?p : Q";
by (rtac classical 1);
by (rtac (major RS notE) 1);
by (REPEAT (ares_tac prems 1)) ;
qed "swap";