(* Title: ZF/Arith.thy
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1992 University of Cambridge
*)
(*"Difference" is subtraction of natural numbers.
There are no negative numbers; we have
m #- n = 0 iff m<=n and m #- n = succ(k) iff m>n.
Also, rec(m, 0, %z w.z) is pred(m).
*)
header{*Arithmetic Operators and Their Definitions*}
theory Arith imports Univ begin
text{*Proofs about elementary arithmetic: addition, multiplication, etc.*}
definition
pred :: "i=>i" (*inverse of succ*) where
"pred(y) == nat_case(0, %x. x, y)"
definition
natify :: "i=>i" (*coerces non-nats to nats*) where
"natify == Vrecursor(%f a. if a = succ(pred(a)) then succ(f`pred(a))
else 0)"
consts
raw_add :: "[i,i]=>i"
raw_diff :: "[i,i]=>i"
raw_mult :: "[i,i]=>i"
primrec
"raw_add (0, n) = n"
"raw_add (succ(m), n) = succ(raw_add(m, n))"
primrec
raw_diff_0: "raw_diff(m, 0) = m"
raw_diff_succ: "raw_diff(m, succ(n)) =
nat_case(0, %x. x, raw_diff(m, n))"
primrec
"raw_mult(0, n) = 0"
"raw_mult(succ(m), n) = raw_add (n, raw_mult(m, n))"
definition
add :: "[i,i]=>i" (infixl "#+" 65) where
"m #+ n == raw_add (natify(m), natify(n))"
definition
diff :: "[i,i]=>i" (infixl "#-" 65) where
"m #- n == raw_diff (natify(m), natify(n))"
definition
mult :: "[i,i]=>i" (infixl "#*" 70) where
"m #* n == raw_mult (natify(m), natify(n))"
definition
raw_div :: "[i,i]=>i" where
"raw_div (m, n) ==
transrec(m, %j f. if j<n | n=0 then 0 else succ(f`(j#-n)))"
definition
raw_mod :: "[i,i]=>i" where
"raw_mod (m, n) ==
transrec(m, %j f. if j<n | n=0 then j else f`(j#-n))"
definition
div :: "[i,i]=>i" (infixl "div" 70) where
"m div n == raw_div (natify(m), natify(n))"
definition
mod :: "[i,i]=>i" (infixl "mod" 70) where
"m mod n == raw_mod (natify(m), natify(n))"
notation (xsymbols)
mult (infixr "#\<times>" 70)
notation (HTML output)
mult (infixr "#\<times>" 70)
declare rec_type [simp]
nat_0_le [simp]
lemma zero_lt_lemma: "[| 0<k; k \<in> nat |] ==> \<exists>j\<in>nat. k = succ(j)"
apply (erule rev_mp)
apply (induct_tac "k", auto)
done
(* [| 0 < k; k \<in> nat; !!j. [| j \<in> nat; k = succ(j) |] ==> Q |] ==> Q *)
lemmas zero_lt_natE = zero_lt_lemma [THEN bexE, standard]
subsection{*@{text natify}, the Coercion to @{term nat}*}
lemma pred_succ_eq [simp]: "pred(succ(y)) = y"
by (unfold pred_def, auto)
lemma natify_succ: "natify(succ(x)) = succ(natify(x))"
by (rule natify_def [THEN def_Vrecursor, THEN trans], auto)
lemma natify_0 [simp]: "natify(0) = 0"
by (rule natify_def [THEN def_Vrecursor, THEN trans], auto)
lemma natify_non_succ: "\<forall>z. x ~= succ(z) ==> natify(x) = 0"
by (rule natify_def [THEN def_Vrecursor, THEN trans], auto)
lemma natify_in_nat [iff,TC]: "natify(x) \<in> nat"
apply (rule_tac a=x in eps_induct)
apply (case_tac "\<exists>z. x = succ(z)")
apply (auto simp add: natify_succ natify_non_succ)
done
lemma natify_ident [simp]: "n \<in> nat ==> natify(n) = n"
apply (induct_tac "n")
apply (auto simp add: natify_succ)
done
lemma natify_eqE: "[|natify(x) = y; x \<in> nat|] ==> x=y"
by auto
(*** Collapsing rules: to remove natify from arithmetic expressions ***)
lemma natify_idem [simp]: "natify(natify(x)) = natify(x)"
by simp
(** Addition **)
lemma add_natify1 [simp]: "natify(m) #+ n = m #+ n"
by (simp add: add_def)
lemma add_natify2 [simp]: "m #+ natify(n) = m #+ n"
by (simp add: add_def)
(** Multiplication **)
lemma mult_natify1 [simp]: "natify(m) #* n = m #* n"
by (simp add: mult_def)
lemma mult_natify2 [simp]: "m #* natify(n) = m #* n"
by (simp add: mult_def)
(** Difference **)
lemma diff_natify1 [simp]: "natify(m) #- n = m #- n"
by (simp add: diff_def)
lemma diff_natify2 [simp]: "m #- natify(n) = m #- n"
by (simp add: diff_def)
(** Remainder **)
lemma mod_natify1 [simp]: "natify(m) mod n = m mod n"
by (simp add: mod_def)
lemma mod_natify2 [simp]: "m mod natify(n) = m mod n"
by (simp add: mod_def)
(** Quotient **)
lemma div_natify1 [simp]: "natify(m) div n = m div n"
by (simp add: div_def)
lemma div_natify2 [simp]: "m div natify(n) = m div n"
by (simp add: div_def)
subsection{*Typing rules*}
(** Addition **)
lemma raw_add_type: "[| m\<in>nat; n\<in>nat |] ==> raw_add (m, n) \<in> nat"
by (induct_tac "m", auto)
lemma add_type [iff,TC]: "m #+ n \<in> nat"
by (simp add: add_def raw_add_type)
(** Multiplication **)
lemma raw_mult_type: "[| m\<in>nat; n\<in>nat |] ==> raw_mult (m, n) \<in> nat"
apply (induct_tac "m")
apply (simp_all add: raw_add_type)
done
lemma mult_type [iff,TC]: "m #* n \<in> nat"
by (simp add: mult_def raw_mult_type)
(** Difference **)
lemma raw_diff_type: "[| m\<in>nat; n\<in>nat |] ==> raw_diff (m, n) \<in> nat"
by (induct_tac "n", auto)
lemma diff_type [iff,TC]: "m #- n \<in> nat"
by (simp add: diff_def raw_diff_type)
lemma diff_0_eq_0 [simp]: "0 #- n = 0"
apply (unfold diff_def)
apply (rule natify_in_nat [THEN nat_induct], auto)
done
(*Must simplify BEFORE the induction: else we get a critical pair*)
lemma diff_succ_succ [simp]: "succ(m) #- succ(n) = m #- n"
apply (simp add: natify_succ diff_def)
apply (rule_tac x1 = n in natify_in_nat [THEN nat_induct], auto)
done
(*This defining property is no longer wanted*)
declare raw_diff_succ [simp del]
(*Natify has weakened this law, compared with the older approach*)
lemma diff_0 [simp]: "m #- 0 = natify(m)"
by (simp add: diff_def)
lemma diff_le_self: "m\<in>nat ==> (m #- n) le m"
apply (subgoal_tac " (m #- natify (n)) le m")
apply (rule_tac [2] m = m and n = "natify (n) " in diff_induct)
apply (erule_tac [6] leE)
apply (simp_all add: le_iff)
done
subsection{*Addition*}
(*Natify has weakened this law, compared with the older approach*)
lemma add_0_natify [simp]: "0 #+ m = natify(m)"
by (simp add: add_def)
lemma add_succ [simp]: "succ(m) #+ n = succ(m #+ n)"
by (simp add: natify_succ add_def)
lemma add_0: "m \<in> nat ==> 0 #+ m = m"
by simp
(*Associative law for addition*)
lemma add_assoc: "(m #+ n) #+ k = m #+ (n #+ k)"
apply (subgoal_tac "(natify(m) #+ natify(n)) #+ natify(k) =
natify(m) #+ (natify(n) #+ natify(k))")
apply (rule_tac [2] n = "natify(m)" in nat_induct)
apply auto
done
(*The following two lemmas are used for add_commute and sometimes
elsewhere, since they are safe for rewriting.*)
lemma add_0_right_natify [simp]: "m #+ 0 = natify(m)"
apply (subgoal_tac "natify(m) #+ 0 = natify(m)")
apply (rule_tac [2] n = "natify(m)" in nat_induct)
apply auto
done
lemma add_succ_right [simp]: "m #+ succ(n) = succ(m #+ n)"
apply (unfold add_def)
apply (rule_tac n = "natify(m) " in nat_induct)
apply (auto simp add: natify_succ)
done
lemma add_0_right: "m \<in> nat ==> m #+ 0 = m"
by auto
(*Commutative law for addition*)
lemma add_commute: "m #+ n = n #+ m"
apply (subgoal_tac "natify(m) #+ natify(n) = natify(n) #+ natify(m) ")
apply (rule_tac [2] n = "natify(m) " in nat_induct)
apply auto
done
(*for a/c rewriting*)
lemma add_left_commute: "m#+(n#+k)=n#+(m#+k)"
apply (rule add_commute [THEN trans])
apply (rule add_assoc [THEN trans])
apply (rule add_commute [THEN subst_context])
done
(*Addition is an AC-operator*)
lemmas add_ac = add_assoc add_commute add_left_commute
(*Cancellation law on the left*)
lemma raw_add_left_cancel:
"[| raw_add(k, m) = raw_add(k, n); k\<in>nat |] ==> m=n"
apply (erule rev_mp)
apply (induct_tac "k", auto)
done
lemma add_left_cancel_natify: "k #+ m = k #+ n ==> natify(m) = natify(n)"
apply (unfold add_def)
apply (drule raw_add_left_cancel, auto)
done
lemma add_left_cancel:
"[| i = j; i #+ m = j #+ n; m\<in>nat; n\<in>nat |] ==> m = n"
by (force dest!: add_left_cancel_natify)
(*Thanks to Sten Agerholm*)
lemma add_le_elim1_natify: "k#+m le k#+n ==> natify(m) le natify(n)"
apply (rule_tac P = "natify(k) #+m le natify(k) #+n" in rev_mp)
apply (rule_tac [2] n = "natify(k) " in nat_induct)
apply auto
done
lemma add_le_elim1: "[| k#+m le k#+n; m \<in> nat; n \<in> nat |] ==> m le n"
by (drule add_le_elim1_natify, auto)
lemma add_lt_elim1_natify: "k#+m < k#+n ==> natify(m) < natify(n)"
apply (rule_tac P = "natify(k) #+m < natify(k) #+n" in rev_mp)
apply (rule_tac [2] n = "natify(k) " in nat_induct)
apply auto
done
lemma add_lt_elim1: "[| k#+m < k#+n; m \<in> nat; n \<in> nat |] ==> m < n"
by (drule add_lt_elim1_natify, auto)
lemma zero_less_add: "[| n \<in> nat; m \<in> nat |] ==> 0 < m #+ n <-> (0<m | 0<n)"
by (induct_tac "n", auto)
subsection{*Monotonicity of Addition*}
(*strict, in 1st argument; proof is by rule induction on 'less than'.
Still need j\<in>nat, for consider j = omega. Then we can have i<omega,
which is the same as i\<in>nat, but natify(j)=0, so the conclusion fails.*)
lemma add_lt_mono1: "[| i<j; j\<in>nat |] ==> i#+k < j#+k"
apply (frule lt_nat_in_nat, assumption)
apply (erule succ_lt_induct)
apply (simp_all add: leI)
done
text{*strict, in second argument*}
lemma add_lt_mono2: "[| i<j; j\<in>nat |] ==> k#+i < k#+j"
by (simp add: add_commute [of k] add_lt_mono1)
text{*A [clumsy] way of lifting < monotonicity to @{text "\<le>"} monotonicity*}
lemma Ord_lt_mono_imp_le_mono:
assumes lt_mono: "!!i j. [| i<j; j:k |] ==> f(i) < f(j)"
and ford: "!!i. i:k ==> Ord(f(i))"
and leij: "i le j"
and jink: "j:k"
shows "f(i) le f(j)"
apply (insert leij jink)
apply (blast intro!: leCI lt_mono ford elim!: leE)
done
text{*@{text "\<le>"} monotonicity, 1st argument*}
lemma add_le_mono1: "[| i le j; j\<in>nat |] ==> i#+k le j#+k"
apply (rule_tac f = "%j. j#+k" in Ord_lt_mono_imp_le_mono, typecheck)
apply (blast intro: add_lt_mono1 add_type [THEN nat_into_Ord])+
done
text{*@{text "\<le>"} monotonicity, both arguments*}
lemma add_le_mono: "[| i le j; k le l; j\<in>nat; l\<in>nat |] ==> i#+k le j#+l"
apply (rule add_le_mono1 [THEN le_trans], assumption+)
apply (subst add_commute, subst add_commute, rule add_le_mono1, assumption+)
done
text{*Combinations of less-than and less-than-or-equals*}
lemma add_lt_le_mono: "[| i<j; k\<le>l; j\<in>nat; l\<in>nat |] ==> i#+k < j#+l"
apply (rule add_lt_mono1 [THEN lt_trans2], assumption+)
apply (subst add_commute, subst add_commute, rule add_le_mono1, assumption+)
done
lemma add_le_lt_mono: "[| i\<le>j; k<l; j\<in>nat; l\<in>nat |] ==> i#+k < j#+l"
by (subst add_commute, subst add_commute, erule add_lt_le_mono, assumption+)
text{*Less-than: in other words, strict in both arguments*}
lemma add_lt_mono: "[| i<j; k<l; j\<in>nat; l\<in>nat |] ==> i#+k < j#+l"
apply (rule add_lt_le_mono)
apply (auto intro: leI)
done
(** Subtraction is the inverse of addition. **)
lemma diff_add_inverse: "(n#+m) #- n = natify(m)"
apply (subgoal_tac " (natify(n) #+ m) #- natify(n) = natify(m) ")
apply (rule_tac [2] n = "natify(n) " in nat_induct)
apply auto
done
lemma diff_add_inverse2: "(m#+n) #- n = natify(m)"
by (simp add: add_commute [of m] diff_add_inverse)
lemma diff_cancel: "(k#+m) #- (k#+n) = m #- n"
apply (subgoal_tac "(natify(k) #+ natify(m)) #- (natify(k) #+ natify(n)) =
natify(m) #- natify(n) ")
apply (rule_tac [2] n = "natify(k) " in nat_induct)
apply auto
done
lemma diff_cancel2: "(m#+k) #- (n#+k) = m #- n"
by (simp add: add_commute [of _ k] diff_cancel)
lemma diff_add_0: "n #- (n#+m) = 0"
apply (subgoal_tac "natify(n) #- (natify(n) #+ natify(m)) = 0")
apply (rule_tac [2] n = "natify(n) " in nat_induct)
apply auto
done
lemma pred_0 [simp]: "pred(0) = 0"
by (simp add: pred_def)
lemma eq_succ_imp_eq_m1: "[|i = succ(j); i\<in>nat|] ==> j = i #- 1 & j \<in>nat"
by simp
lemma pred_Un_distrib:
"[|i\<in>nat; j\<in>nat|] ==> pred(i Un j) = pred(i) Un pred(j)"
apply (erule_tac n=i in natE, simp)
apply (erule_tac n=j in natE, simp)
apply (simp add: succ_Un_distrib [symmetric])
done
lemma pred_type [TC,simp]:
"i \<in> nat ==> pred(i) \<in> nat"
by (simp add: pred_def split: split_nat_case)
lemma nat_diff_pred: "[|i\<in>nat; j\<in>nat|] ==> i #- succ(j) = pred(i #- j)";
apply (rule_tac m=i and n=j in diff_induct)
apply (auto simp add: pred_def nat_imp_quasinat split: split_nat_case)
done
lemma diff_succ_eq_pred: "i #- succ(j) = pred(i #- j)";
apply (insert nat_diff_pred [of "natify(i)" "natify(j)"])
apply (simp add: natify_succ [symmetric])
done
lemma nat_diff_Un_distrib:
"[|i\<in>nat; j\<in>nat; k\<in>nat|] ==> (i Un j) #- k = (i#-k) Un (j#-k)"
apply (rule_tac n=k in nat_induct)
apply (simp_all add: diff_succ_eq_pred pred_Un_distrib)
done
lemma diff_Un_distrib:
"[|i\<in>nat; j\<in>nat|] ==> (i Un j) #- k = (i#-k) Un (j#-k)"
by (insert nat_diff_Un_distrib [of i j "natify(k)"], simp)
text{*We actually prove @{term "i #- j #- k = i #- (j #+ k)"}*}
lemma diff_diff_left [simplified]:
"natify(i)#-natify(j)#-k = natify(i) #- (natify(j)#+k)";
by (rule_tac m="natify(i)" and n="natify(j)" in diff_induct, auto)
(** Lemmas for the CancelNumerals simproc **)
lemma eq_add_iff: "(u #+ m = u #+ n) <-> (0 #+ m = natify(n))"
apply auto
apply (blast dest: add_left_cancel_natify)
apply (simp add: add_def)
done
lemma less_add_iff: "(u #+ m < u #+ n) <-> (0 #+ m < natify(n))"
apply (auto simp add: add_lt_elim1_natify)
apply (drule add_lt_mono1)
apply (auto simp add: add_commute [of u])
done
lemma diff_add_eq: "((u #+ m) #- (u #+ n)) = ((0 #+ m) #- n)"
by (simp add: diff_cancel)
(*To tidy up the result of a simproc. Only the RHS will be simplified.*)
lemma eq_cong2: "u = u' ==> (t==u) == (t==u')"
by auto
lemma iff_cong2: "u <-> u' ==> (t==u) == (t==u')"
by auto
subsection{*Multiplication*}
lemma mult_0 [simp]: "0 #* m = 0"
by (simp add: mult_def)
lemma mult_succ [simp]: "succ(m) #* n = n #+ (m #* n)"
by (simp add: add_def mult_def natify_succ raw_mult_type)
(*right annihilation in product*)
lemma mult_0_right [simp]: "m #* 0 = 0"
apply (unfold mult_def)
apply (rule_tac n = "natify(m) " in nat_induct)
apply auto
done
(*right successor law for multiplication*)
lemma mult_succ_right [simp]: "m #* succ(n) = m #+ (m #* n)"
apply (subgoal_tac "natify(m) #* succ (natify(n)) =
natify(m) #+ (natify(m) #* natify(n))")
apply (simp (no_asm_use) add: natify_succ add_def mult_def)
apply (rule_tac n = "natify(m) " in nat_induct)
apply (simp_all add: add_ac)
done
lemma mult_1_natify [simp]: "1 #* n = natify(n)"
by auto
lemma mult_1_right_natify [simp]: "n #* 1 = natify(n)"
by auto
lemma mult_1: "n \<in> nat ==> 1 #* n = n"
by simp
lemma mult_1_right: "n \<in> nat ==> n #* 1 = n"
by simp
(*Commutative law for multiplication*)
lemma mult_commute: "m #* n = n #* m"
apply (subgoal_tac "natify(m) #* natify(n) = natify(n) #* natify(m) ")
apply (rule_tac [2] n = "natify(m) " in nat_induct)
apply auto
done
(*addition distributes over multiplication*)
lemma add_mult_distrib: "(m #+ n) #* k = (m #* k) #+ (n #* k)"
apply (subgoal_tac "(natify(m) #+ natify(n)) #* natify(k) =
(natify(m) #* natify(k)) #+ (natify(n) #* natify(k))")
apply (rule_tac [2] n = "natify(m) " in nat_induct)
apply (simp_all add: add_assoc [symmetric])
done
(*Distributive law on the left*)
lemma add_mult_distrib_left: "k #* (m #+ n) = (k #* m) #+ (k #* n)"
apply (subgoal_tac "natify(k) #* (natify(m) #+ natify(n)) =
(natify(k) #* natify(m)) #+ (natify(k) #* natify(n))")
apply (rule_tac [2] n = "natify(m) " in nat_induct)
apply (simp_all add: add_ac)
done
(*Associative law for multiplication*)
lemma mult_assoc: "(m #* n) #* k = m #* (n #* k)"
apply (subgoal_tac "(natify(m) #* natify(n)) #* natify(k) =
natify(m) #* (natify(n) #* natify(k))")
apply (rule_tac [2] n = "natify(m) " in nat_induct)
apply (simp_all add: add_mult_distrib)
done
(*for a/c rewriting*)
lemma mult_left_commute: "m #* (n #* k) = n #* (m #* k)"
apply (rule mult_commute [THEN trans])
apply (rule mult_assoc [THEN trans])
apply (rule mult_commute [THEN subst_context])
done
lemmas mult_ac = mult_assoc mult_commute mult_left_commute
lemma lt_succ_eq_0_disj:
"[| m\<in>nat; n\<in>nat |]
==> (m < succ(n)) <-> (m = 0 | (\<exists>j\<in>nat. m = succ(j) & j < n))"
by (induct_tac "m", auto)
lemma less_diff_conv [rule_format]:
"[| j\<in>nat; k\<in>nat |] ==> \<forall>i\<in>nat. (i < j #- k) <-> (i #+ k < j)"
by (erule_tac m = k in diff_induct, auto)
lemmas nat_typechecks = rec_type nat_0I nat_1I nat_succI Ord_nat
end