header {* Extending FOL by a modified version of HOL set theory *}
theory Set
imports FOL
begin
global
typedecl 'a set
arities set :: ("term") "term"
consts
Collect :: "['a => o] => 'a set" (*comprehension*)
Compl :: "('a set) => 'a set" (*complement*)
Int :: "['a set, 'a set] => 'a set" (infixl "Int" 70)
Un :: "['a set, 'a set] => 'a set" (infixl "Un" 65)
Union :: "(('a set)set) => 'a set" (*...of a set*)
Inter :: "(('a set)set) => 'a set" (*...of a set*)
UNION :: "['a set, 'a => 'b set] => 'b set" (*general*)
INTER :: "['a set, 'a => 'b set] => 'b set" (*general*)
Ball :: "['a set, 'a => o] => o" (*bounded quants*)
Bex :: "['a set, 'a => o] => o" (*bounded quants*)
mono :: "['a set => 'b set] => o" (*monotonicity*)
mem :: "['a, 'a set] => o" (infixl ":" 50) (*membership*)
subset :: "['a set, 'a set] => o" (infixl "<=" 50)
singleton :: "'a => 'a set" ("{_}")
empty :: "'a set" ("{}")
syntax
"@Coll" :: "[idt, o] => 'a set" ("(1{_./ _})") (*collection*)
(* Big Intersection / Union *)
"@INTER" :: "[idt, 'a set, 'b set] => 'b set" ("(INT _:_./ _)" [0, 0, 0] 10)
"@UNION" :: "[idt, 'a set, 'b set] => 'b set" ("(UN _:_./ _)" [0, 0, 0] 10)
(* Bounded Quantifiers *)
"@Ball" :: "[idt, 'a set, o] => o" ("(ALL _:_./ _)" [0, 0, 0] 10)
"@Bex" :: "[idt, 'a set, o] => o" ("(EX _:_./ _)" [0, 0, 0] 10)
translations
"{x. P}" == "Collect(%x. P)"
"INT x:A. B" == "INTER(A, %x. B)"
"UN x:A. B" == "UNION(A, %x. B)"
"ALL x:A. P" == "Ball(A, %x. P)"
"EX x:A. P" == "Bex(A, %x. P)"
local
axioms
mem_Collect_iff: "(a : {x. P(x)}) <-> P(a)"
set_extension: "A=B <-> (ALL x. x:A <-> x:B)"
defs
Ball_def: "Ball(A, P) == ALL x. x:A --> P(x)"
Bex_def: "Bex(A, P) == EX x. x:A & P(x)"
mono_def: "mono(f) == (ALL A B. A <= B --> f(A) <= f(B))"
subset_def: "A <= B == ALL x:A. x:B"
singleton_def: "{a} == {x. x=a}"
empty_def: "{} == {x. False}"
Un_def: "A Un B == {x. x:A | x:B}"
Int_def: "A Int B == {x. x:A & x:B}"
Compl_def: "Compl(A) == {x. ~x:A}"
INTER_def: "INTER(A, B) == {y. ALL x:A. y: B(x)}"
UNION_def: "UNION(A, B) == {y. EX x:A. y: B(x)}"
Inter_def: "Inter(S) == (INT x:S. x)"
Union_def: "Union(S) == (UN x:S. x)"
lemma CollectI: "[| P(a) |] ==> a : {x. P(x)}"
apply (rule mem_Collect_iff [THEN iffD2])
apply assumption
done
lemma CollectD: "[| a : {x. P(x)} |] ==> P(a)"
apply (erule mem_Collect_iff [THEN iffD1])
done
lemmas CollectE = CollectD [elim_format]
lemma set_ext: "[| !!x. x:A <-> x:B |] ==> A = B"
apply (rule set_extension [THEN iffD2])
apply simp
done
subsection {* Bounded quantifiers *}
lemma ballI: "[| !!x. x:A ==> P(x) |] ==> ALL x:A. P(x)"
by (simp add: Ball_def)
lemma bspec: "[| ALL x:A. P(x); x:A |] ==> P(x)"
by (simp add: Ball_def)
lemma ballE: "[| ALL x:A. P(x); P(x) ==> Q; ~ x:A ==> Q |] ==> Q"
unfolding Ball_def by blast
lemma bexI: "[| P(x); x:A |] ==> EX x:A. P(x)"
unfolding Bex_def by blast
lemma bexCI: "[| EX x:A. ~P(x) ==> P(a); a:A |] ==> EX x:A. P(x)"
unfolding Bex_def by blast
lemma bexE: "[| EX x:A. P(x); !!x. [| x:A; P(x) |] ==> Q |] ==> Q"
unfolding Bex_def by blast
(*Trival rewrite rule; (! x:A.P)=P holds only if A is nonempty!*)
lemma ball_rew: "(ALL x:A. True) <-> True"
by (blast intro: ballI)
subsection {* Congruence rules *}
lemma ball_cong:
"[| A=A'; !!x. x:A' ==> P(x) <-> P'(x) |] ==>
(ALL x:A. P(x)) <-> (ALL x:A'. P'(x))"
by (blast intro: ballI elim: ballE)
lemma bex_cong:
"[| A=A'; !!x. x:A' ==> P(x) <-> P'(x) |] ==>
(EX x:A. P(x)) <-> (EX x:A'. P'(x))"
by (blast intro: bexI elim: bexE)
subsection {* Rules for subsets *}
lemma subsetI: "(!!x. x:A ==> x:B) ==> A <= B"
unfolding subset_def by (blast intro: ballI)
(*Rule in Modus Ponens style*)
lemma subsetD: "[| A <= B; c:A |] ==> c:B"
unfolding subset_def by (blast elim: ballE)
(*Classical elimination rule*)
lemma subsetCE: "[| A <= B; ~(c:A) ==> P; c:B ==> P |] ==> P"
by (blast dest: subsetD)
lemma subset_refl: "A <= A"
by (blast intro: subsetI)
lemma subset_trans: "[| A<=B; B<=C |] ==> A<=C"
by (blast intro: subsetI dest: subsetD)
subsection {* Rules for equality *}
(*Anti-symmetry of the subset relation*)
lemma subset_antisym: "[| A <= B; B <= A |] ==> A = B"
by (blast intro: set_ext dest: subsetD)
lemmas equalityI = subset_antisym
(* Equality rules from ZF set theory -- are they appropriate here? *)
lemma equalityD1: "A = B ==> A<=B"
and equalityD2: "A = B ==> B<=A"
by (simp_all add: subset_refl)
lemma equalityE: "[| A = B; [| A<=B; B<=A |] ==> P |] ==> P"
by (simp add: subset_refl)
lemma equalityCE:
"[| A = B; [| c:A; c:B |] ==> P; [| ~ c:A; ~ c:B |] ==> P |] ==> P"
by (blast elim: equalityE subsetCE)
lemma trivial_set: "{x. x:A} = A"
by (blast intro: equalityI subsetI CollectI dest: CollectD)
subsection {* Rules for binary union *}
lemma UnI1: "c:A ==> c : A Un B"
and UnI2: "c:B ==> c : A Un B"
unfolding Un_def by (blast intro: CollectI)+
(*Classical introduction rule: no commitment to A vs B*)
lemma UnCI: "(~c:B ==> c:A) ==> c : A Un B"
by (blast intro: UnI1 UnI2)
lemma UnE: "[| c : A Un B; c:A ==> P; c:B ==> P |] ==> P"
unfolding Un_def by (blast dest: CollectD)
subsection {* Rules for small intersection *}
lemma IntI: "[| c:A; c:B |] ==> c : A Int B"
unfolding Int_def by (blast intro: CollectI)
lemma IntD1: "c : A Int B ==> c:A"
and IntD2: "c : A Int B ==> c:B"
unfolding Int_def by (blast dest: CollectD)+
lemma IntE: "[| c : A Int B; [| c:A; c:B |] ==> P |] ==> P"
by (blast dest: IntD1 IntD2)
subsection {* Rules for set complement *}
lemma ComplI: "[| c:A ==> False |] ==> c : Compl(A)"
unfolding Compl_def by (blast intro: CollectI)
(*This form, with negated conclusion, works well with the Classical prover.
Negated assumptions behave like formulae on the right side of the notional
turnstile...*)
lemma ComplD: "[| c : Compl(A) |] ==> ~c:A"
unfolding Compl_def by (blast dest: CollectD)
lemmas ComplE = ComplD [elim_format]
subsection {* Empty sets *}
lemma empty_eq: "{x. False} = {}"
by (simp add: empty_def)
lemma emptyD: "a : {} ==> P"
unfolding empty_def by (blast dest: CollectD)
lemmas emptyE = emptyD [elim_format]
lemma not_emptyD:
assumes "~ A={}"
shows "EX x. x:A"
proof -
have "\<not> (EX x. x:A) \<Longrightarrow> A = {}"
by (rule equalityI) (blast intro!: subsetI elim!: emptyD)+
with prems show ?thesis by blast
qed
subsection {* Singleton sets *}
lemma singletonI: "a : {a}"
unfolding singleton_def by (blast intro: CollectI)
lemma singletonD: "b : {a} ==> b=a"
unfolding singleton_def by (blast dest: CollectD)
lemmas singletonE = singletonD [elim_format]
subsection {* Unions of families *}
(*The order of the premises presupposes that A is rigid; b may be flexible*)
lemma UN_I: "[| a:A; b: B(a) |] ==> b: (UN x:A. B(x))"
unfolding UNION_def by (blast intro: bexI CollectI)
lemma UN_E: "[| b : (UN x:A. B(x)); !!x.[| x:A; b: B(x) |] ==> R |] ==> R"
unfolding UNION_def by (blast dest: CollectD elim: bexE)
lemma UN_cong:
"[| A=B; !!x. x:B ==> C(x) = D(x) |] ==>
(UN x:A. C(x)) = (UN x:B. D(x))"
by (simp add: UNION_def cong: bex_cong)
subsection {* Intersections of families *}
lemma INT_I: "(!!x. x:A ==> b: B(x)) ==> b : (INT x:A. B(x))"
unfolding INTER_def by (blast intro: CollectI ballI)
lemma INT_D: "[| b : (INT x:A. B(x)); a:A |] ==> b: B(a)"
unfolding INTER_def by (blast dest: CollectD bspec)
(*"Classical" elimination rule -- does not require proving X:C *)
lemma INT_E: "[| b : (INT x:A. B(x)); b: B(a) ==> R; ~ a:A ==> R |] ==> R"
unfolding INTER_def by (blast dest: CollectD bspec)
lemma INT_cong:
"[| A=B; !!x. x:B ==> C(x) = D(x) |] ==>
(INT x:A. C(x)) = (INT x:B. D(x))"
by (simp add: INTER_def cong: ball_cong)
subsection {* Rules for Unions *}
(*The order of the premises presupposes that C is rigid; A may be flexible*)
lemma UnionI: "[| X:C; A:X |] ==> A : Union(C)"
unfolding Union_def by (blast intro: UN_I)
lemma UnionE: "[| A : Union(C); !!X.[| A:X; X:C |] ==> R |] ==> R"
unfolding Union_def by (blast elim: UN_E)
subsection {* Rules for Inter *}
lemma InterI: "[| !!X. X:C ==> A:X |] ==> A : Inter(C)"
unfolding Inter_def by (blast intro: INT_I)
(*A "destruct" rule -- every X in C contains A as an element, but
A:X can hold when X:C does not! This rule is analogous to "spec". *)
lemma InterD: "[| A : Inter(C); X:C |] ==> A:X"
unfolding Inter_def by (blast dest: INT_D)
(*"Classical" elimination rule -- does not require proving X:C *)
lemma InterE: "[| A : Inter(C); A:X ==> R; ~ X:C ==> R |] ==> R"
unfolding Inter_def by (blast elim: INT_E)
section {* Derived rules involving subsets; Union and Intersection as lattice operations *}
subsection {* Big Union -- least upper bound of a set *}
lemma Union_upper: "B:A ==> B <= Union(A)"
by (blast intro: subsetI UnionI)
lemma Union_least: "[| !!X. X:A ==> X<=C |] ==> Union(A) <= C"
by (blast intro: subsetI dest: subsetD elim: UnionE)
subsection {* Big Intersection -- greatest lower bound of a set *}
lemma Inter_lower: "B:A ==> Inter(A) <= B"
by (blast intro: subsetI dest: InterD)
lemma Inter_greatest: "[| !!X. X:A ==> C<=X |] ==> C <= Inter(A)"
by (blast intro: subsetI InterI dest: subsetD)
subsection {* Finite Union -- the least upper bound of 2 sets *}
lemma Un_upper1: "A <= A Un B"
by (blast intro: subsetI UnI1)
lemma Un_upper2: "B <= A Un B"
by (blast intro: subsetI UnI2)
lemma Un_least: "[| A<=C; B<=C |] ==> A Un B <= C"
by (blast intro: subsetI elim: UnE dest: subsetD)
subsection {* Finite Intersection -- the greatest lower bound of 2 sets *}
lemma Int_lower1: "A Int B <= A"
by (blast intro: subsetI elim: IntE)
lemma Int_lower2: "A Int B <= B"
by (blast intro: subsetI elim: IntE)
lemma Int_greatest: "[| C<=A; C<=B |] ==> C <= A Int B"
by (blast intro: subsetI IntI dest: subsetD)
subsection {* Monotonicity *}
lemma monoI: "[| !!A B. A <= B ==> f(A) <= f(B) |] ==> mono(f)"
unfolding mono_def by blast
lemma monoD: "[| mono(f); A <= B |] ==> f(A) <= f(B)"
unfolding mono_def by blast
lemma mono_Un: "mono(f) ==> f(A) Un f(B) <= f(A Un B)"
by (blast intro: Un_least dest: monoD intro: Un_upper1 Un_upper2)
lemma mono_Int: "mono(f) ==> f(A Int B) <= f(A) Int f(B)"
by (blast intro: Int_greatest dest: monoD intro: Int_lower1 Int_lower2)
subsection {* Automated reasoning setup *}
lemmas [intro!] = ballI subsetI InterI INT_I CollectI ComplI IntI UnCI singletonI
and [intro] = bexI UnionI UN_I
and [elim!] = bexE UnionE UN_E CollectE ComplE IntE UnE emptyE singletonE
and [elim] = ballE InterD InterE INT_D INT_E subsetD subsetCE
lemma mem_rews:
"(a : A Un B) <-> (a:A | a:B)"
"(a : A Int B) <-> (a:A & a:B)"
"(a : Compl(B)) <-> (~a:B)"
"(a : {b}) <-> (a=b)"
"(a : {}) <-> False"
"(a : {x. P(x)}) <-> P(a)"
by blast+
lemmas [simp] = trivial_set empty_eq mem_rews
and [cong] = ball_cong bex_cong INT_cong UN_cong
section {* Equalities involving union, intersection, inclusion, etc. *}
subsection {* Binary Intersection *}
lemma Int_absorb: "A Int A = A"
by (blast intro: equalityI)
lemma Int_commute: "A Int B = B Int A"
by (blast intro: equalityI)
lemma Int_assoc: "(A Int B) Int C = A Int (B Int C)"
by (blast intro: equalityI)
lemma Int_Un_distrib: "(A Un B) Int C = (A Int C) Un (B Int C)"
by (blast intro: equalityI)
lemma subset_Int_eq: "(A<=B) <-> (A Int B = A)"
by (blast intro: equalityI elim: equalityE)
subsection {* Binary Union *}
lemma Un_absorb: "A Un A = A"
by (blast intro: equalityI)
lemma Un_commute: "A Un B = B Un A"
by (blast intro: equalityI)
lemma Un_assoc: "(A Un B) Un C = A Un (B Un C)"
by (blast intro: equalityI)
lemma Un_Int_distrib: "(A Int B) Un C = (A Un C) Int (B Un C)"
by (blast intro: equalityI)
lemma Un_Int_crazy:
"(A Int B) Un (B Int C) Un (C Int A) = (A Un B) Int (B Un C) Int (C Un A)"
by (blast intro: equalityI)
lemma subset_Un_eq: "(A<=B) <-> (A Un B = B)"
by (blast intro: equalityI elim: equalityE)
subsection {* Simple properties of @{text "Compl"} -- complement of a set *}
lemma Compl_disjoint: "A Int Compl(A) = {x. False}"
by (blast intro: equalityI)
lemma Compl_partition: "A Un Compl(A) = {x. True}"
by (blast intro: equalityI)
lemma double_complement: "Compl(Compl(A)) = A"
by (blast intro: equalityI)
lemma Compl_Un: "Compl(A Un B) = Compl(A) Int Compl(B)"
by (blast intro: equalityI)
lemma Compl_Int: "Compl(A Int B) = Compl(A) Un Compl(B)"
by (blast intro: equalityI)
lemma Compl_UN: "Compl(UN x:A. B(x)) = (INT x:A. Compl(B(x)))"
by (blast intro: equalityI)
lemma Compl_INT: "Compl(INT x:A. B(x)) = (UN x:A. Compl(B(x)))"
by (blast intro: equalityI)
(*Halmos, Naive Set Theory, page 16.*)
lemma Un_Int_assoc_eq: "((A Int B) Un C = A Int (B Un C)) <-> (C<=A)"
by (blast intro: equalityI elim: equalityE)
subsection {* Big Union and Intersection *}
lemma Union_Un_distrib: "Union(A Un B) = Union(A) Un Union(B)"
by (blast intro: equalityI)
lemma Union_disjoint:
"(Union(C) Int A = {x. False}) <-> (ALL B:C. B Int A = {x. False})"
by (blast intro: equalityI elim: equalityE)
lemma Inter_Un_distrib: "Inter(A Un B) = Inter(A) Int Inter(B)"
by (blast intro: equalityI)
subsection {* Unions and Intersections of Families *}
lemma UN_eq: "(UN x:A. B(x)) = Union({Y. EX x:A. Y=B(x)})"
by (blast intro: equalityI)
(*Look: it has an EXISTENTIAL quantifier*)
lemma INT_eq: "(INT x:A. B(x)) = Inter({Y. EX x:A. Y=B(x)})"
by (blast intro: equalityI)
lemma Int_Union_image: "A Int Union(B) = (UN C:B. A Int C)"
by (blast intro: equalityI)
lemma Un_Inter_image: "A Un Inter(B) = (INT C:B. A Un C)"
by (blast intro: equalityI)
section {* Monotonicity of various operations *}
lemma Union_mono: "A<=B ==> Union(A) <= Union(B)"
by blast
lemma Inter_anti_mono: "[| B<=A |] ==> Inter(A) <= Inter(B)"
by blast
lemma UN_mono:
"[| A<=B; !!x. x:A ==> f(x)<=g(x) |] ==>
(UN x:A. f(x)) <= (UN x:B. g(x))"
by blast
lemma INT_anti_mono:
"[| B<=A; !!x. x:A ==> f(x)<=g(x) |] ==>
(INT x:A. f(x)) <= (INT x:A. g(x))"
by blast
lemma Un_mono: "[| A<=C; B<=D |] ==> A Un B <= C Un D"
by blast
lemma Int_mono: "[| A<=C; B<=D |] ==> A Int B <= C Int D"
by blast
lemma Compl_anti_mono: "[| A<=B |] ==> Compl(B) <= Compl(A)"
by blast
end