src/HOL/Integ/Lagrange.ML
author nipkow
Mon, 20 Jan 1997 18:29:26 +0100
changeset 2531 7cfa1a9c744d
parent 2281 e00c13a29eda
child 3239 6e2ceb50e17b
permissions -rw-r--r--
Improved text.

(*  Title:      HOL/Integ/Lagrange.ML
    ID:         $Id$
    Author:     Tobias Nipkow
    Copyright   1996 TU Muenchen


The following lemma essentially shows that all composite natural numbers are
sums of fours squares, provided all prime numbers are. However, this is an
abstract thm about commutative rings and has a priori nothing to do with nat.
*)

goalw Lagrange.thy [Lagrange.sq_def] "!!x1::'a::cring. \
\  (sq x1 + sq x2 + sq x3 + sq x4) * (sq y1 + sq y2 + sq y3 + sq y4) = \
\  sq(x1*y1 - x2*y2 - x3*y3 - x4*y4)  + \
\  sq(x1*y2 + x2*y1 + x3*y4 - x4*y3)  + \
\  sq(x1*y3 - x2*y4 + x3*y1 + x4*y2)  + \
\  sq(x1*y4 + x2*y3 - x3*y2 + x4*y1)";
by(cring_simp 1);
qed "Lagrange_lemma";