(* Title: HOL/ex/Codegenerator_Pretty.thy
ID: $Id$
Author: Florian Haftmann, TU Muenchen
*)
header {* Simple examples for pretty numerals and such *}
theory Codegenerator_Pretty
imports Executable_Rat Executable_Real Efficient_Nat
begin
definition
foo :: "rat \<Rightarrow> rat \<Rightarrow> rat \<Rightarrow> rat" where
"foo r s t = (t + s) / t"
definition
bar :: "rat \<Rightarrow> rat \<Rightarrow> rat \<Rightarrow> bool" where
"bar r s t \<longleftrightarrow> (r - s) \<le> t \<or> (s - t) \<le> r"
definition
"R1 = Fract 3 7"
definition
"R2 = Fract (-7) 5"
definition
"R3 = Fract 11 (-9)"
definition
"foobar = (foo R1 1 R3, bar R2 0 R3, foo R1 R3 R2)"
definition
foo' :: "real \<Rightarrow> real \<Rightarrow> real \<Rightarrow> real" where
"foo' r s t = (t + s) / t"
definition
bar' :: "real \<Rightarrow> real \<Rightarrow> real \<Rightarrow> bool" where
"bar' r s t \<longleftrightarrow> (r - s) \<le> t \<or> (s - t) \<le> r"
definition
"R1' = real_of_rat (Fract 3 7)"
definition
"R2' = real_of_rat (Fract (-7) 5)"
definition
"R3' = real_of_rat (Fract 11 (-9))"
definition
"foobar' = (foo' R1' 1 R3', bar' R2' 0 R3', foo' R1' R3' R2')"
code_gen foobar foobar' in SML to Foo
in OCaml file -
in Haskell file -
ML {* (Foo.foobar, Foo.foobar') *}
end